目前基于深度学习模型的预测在真实场景中具有不确定性和不可解释性,给人工智能应用的落地带来了不可避免的风险。
首先阐述了风险分析的必要性以及其需要具备的3个基本特征:可量化、可解释、可学习。
接着,分析了风险分析的研究现状,并重点引见了笔者最近提出的一个可量化、可解释和可学习的风险分析技术框架。
最后,讨论风险分析的现有以及潜在的应用,并展望其未来的研究方向。
1
图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。
它是计算机视觉的核心,实际应用广泛。
图像分类的传统方法是特征描述及检测,这类传统方法可能对于一些简单的图像分类是无效的,但由于实际情况非常复杂,传统的分类方法不堪重负。
现在,我们不再试图用代码来描述每一个图像类别,决定转而使用机器学习的方法处理图像分类问题。
目前,许多研究者使用CNN等深度学习模型进行图像分类;另外,经典的KNN和SVM算法也取得不错的结果。
然而,我们似乎无法断言,哪种方法对于图像分来问题效果最佳。
本项目中,我们做了一些有意思的事情:将业内普遍用于图像分类的CNN和迁移学习算法与KNN,SVM,BP神经网络进
1
在Opencv中运用预训练的深度学习模型,实现特定物体的识别
2022/9/5 8:21:26 48.54MB 图像识别
1
【为什么学习机器学习算法?】人工智能是国家发展的战略,未来发展的必然趋势。
将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。
中国人工智能人才缺口超过500万,人才供不应求。
要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。
【课程简介】很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。
本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。
本课程选取了机器学习经典的8大模型:线性回归、逻辑回归、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维再也不用东拼西凑,一门课程真正掌握机器学习核心技术。
它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。
?《深度学习与神经网络从原理到实践》课程现已上线,这使得人工智能学习路径愈加完备,地址:https://edu.csdn.net/course/detail/29539
2018/5/3 18:47:12 3.37MB 人工智能 机器学习 算法 数学 技术 回顾
1
本软件是一个使用BP神经网络为制造模型,构建的一个二层网络学习模型,其中输入维数为2,隐层单元数为2,输出为1,模拟了与或门的学习过程。
作者通过制造,使得网络最佳效果能在400次左右能收敛,使用者可以通过多次运行来观察效果。
2021/7/19 2:12:01 65KB BP,神经网络
1
基于c#实现的webapi调用软件,用于请求web服务,尤其是通过aistudio平台部署的深度学习模型。
如果您的自己的webapi接口前往的也是json格式的信息,也可以使用本软件进行请求调用。
只是在请求服务前,一定要点击软件界面加密,将原始的url信息转化为用户不可读的字符串,然后再点击测试
2018/11/14 2:46:41 304KB webapi调用 桌面软件
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡