线性回归餐厅情感分析目录表描述线性回归机器学习模型可预测评论是肯定的还能否定的。
它以86%的准确度正确预测正确的标签。
技术领域使用以下项目创建项目:python版本:3.9.1NumPy库版本:1.20.0熊猫库版本:1.2.2数据集制作数据集后,每个功能都是代表餐厅评论中所使用单词的存在或不存在的分类特征(0、1)。
常见词(例如“the”,“a”等)未分类。
每行代表一个点(餐厅评论),每列代表其特征(评论中能否使用单词)。
除了评论是肯定的(1)还能否定的(0),每列都是除包含标签的最后一列之外的单独功能。
设置下载.py文件,training_dataset,validation_dataset和权重文件。
将它们放在单个文件或项目文件中。
运行代码将以下内容添加到类文件中:x=logistic_regression("train_d
2021/7/1 3:16:04 4.99MB Python
1
FLIR公司的ADAS可见光-红外数据库(共有5个文件总共15G左右),以及两个其他小数据集。
FLIR的数据库用于无人驾驶汽车的辅助夜视零碎深度学习模型训练。
这是目前业内最齐全的数据集。
1
报告对各种Boosting集成学习模型进行系统测试Boosting集成学习模型将多个弱学习器串行结合,能够很好地兼顾模型的偏差和方差,该类模型在最近几年获得了长足的发展,主要包括AdaBoost、GBDT、XGBoost。
本篇报告我们将对这三种Boosting集成学习模型进行系统性的测试,并分析它们应用于多因子选股的异同,希望对本领域的投资者产生有实意图义的参考价值。
2020/5/17 15:54:58 2.72MB AI Boosting
1
NLP-Models-Tensorflow,针对NLP问题收集机器学习和tensorflow深度学习模型,JupyterNotebooks内部的代码简化了100%。
目录目的原始的实现非常复杂,并且对初学者并不友好。
因而,我尝试简化其中的大部分内容。
此外,还有大量尚未发布的文件实施。
因而,随时将其用于您自己的研究!我将为我没有从头实现的模型附加github存储库,基本上,我会针对不赞成使用的问题复制,粘贴和修复​​这些代码。
Tensorflow版本仅Tensorflow版本1.13及更高版本,不包括2.X版本。
1.13<Tensorflow<2.0pipinstall-rrequirements.txt内容接受培训。
精度仅基于10个历元,使用单词位置计算得出。
完整列表(12个笔记本)LSTMSeq2Seq使用主题建模,测试精度为13.22%LSTMSeq2Seq+Luong注意事项使用主题建模,测试准确性为12.39%采用主题建模的LSTMSeq2Seq+BeamDecoder,测试精度为10.67%
2019/6/21 2:21:45 36.31MB nlp machine-learning embedded deep-learning
1
本资源包含一个Mnist手写体的训练脚本,可在环境配置好的情况下直接训练学习模型,然后可以根据模型输出任意照片,预测结果,直接可用,适合入门者。
2019/8/5 9:35:08 10.26MB Mnist手写体 训练脚本 测试脚本
1
MATLAB的IEEE14bus系统simulink仿真,仿真调试无错误,可以作为初级电力系统学习者的学习模型,也可以进行一定的修改来满足本人的仿真需要。
2016/7/13 7:52:04 15KB BUS system
1
TensorFlow内核剖析TensorFlowInternals刘光聪著本书定位这是一本剖析TensorFlow内核工作原理的书籍,并非讲述如何使用TensorFlow构建机器学习模型,也不会讲述应用TensorFlow的最佳实践。
本书将通过剖析TensorFlow源代码的方式,揭示TensorFlow的系统架构、领域模型、工作原理、及其实现模式等相关内容,以便揭示内在的知识。
面向的读者本书假设读者已经了解机器学习相关基本概念与理论,了解机器学习相关的基本方法论;同时,假设读者熟悉Python,C++等程序设计语言。
本书适合于渴望深入了解TensorFlow内核设计,期望改善TensorFlow系统设计和功能优化,及其探究TensorFlow关键技术的设计和实现的系统架构师、AI算法工程师、和AI软件工程师。
2020/1/14 6:26:52 21.27MB tensorflow
1
深度发送项目描述该项目将基于唤醒价情感模型(又称为)分析用户上传的音乐文件。
唤醒代表音乐对人耳的强烈或“刺激性”,从平淡而放松的感觉到强烈而令人振奋的感觉。
此处的价表示音乐听起来多么令人愉悦或多么悲伤。
这个定义比定义要窄,但是对于机器学习模型来说更容易分类。
此外,该项目还实现了节拍检测和音乐流派检测的功能。
Web框架:,涉及技能:HTML,CSS,javascript,python放大细节节拍,唤醒和化合价检测:音乐原始数据的中间50%被分为5秒帧,步长为0.5秒。
然后将每个帧分成较小的25ms子帧,然后将其转换为MFCC(梅尔频率倒谱系数)阵列。
最后,将最初为矩
2017/7/15 20:55:58 24.69MB music machine-learning neural-network scikit-learn
1
这是SVM的具体代码,里面有详细的阐明使用和测试图片,欢迎下载。
SVM(SupportVectorMachine)指的是支持向量机,是常见的一种判别方法。
在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。
2015/6/20 23:38:57 820KB SVM 测试
1
虚假新闻检测器使用LSTM-RNN通过使用LSTM(长期短期记忆)递归神经网络,开发了深度学习模型来识别文章何时可能是假新闻。
数据集数据集在kaggle网站上给出任务在nltkFramework的协助下,通过删除标点符号,停用词等对文本数据进行预处理执行一种热编码,包括填充序列应用词嵌入语料库文件训练具有100个神经元的单层LSTM模型训练数据的准确性为99%,测试数据的准确性为90%
2018/8/11 9:08:51 2.75MB JupyterNotebook
1
共 56 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡