ATMEL的AT91SAM7S64的RS485通讯程序,中断方式接收,收到后立即通过485发送出去,485配置的管脚为PA5,PA6,PA7(收发使能),开发环境是IAREmbeddedWorkbench4.5。
对于一个数据串的接收也是类似的,采用收到数据中断方式,在收完完整的数据后(接收结束后)才能发送,否则会存在总线冲突。
2023/6/10 18:33:27 1.1MB AT91SAM7S64 RS485
1
1.反对于APB总线接口2.反对于PWM单次方式以及络续方式可配3.反对于PWM周期配置配备枚举连忙失效以及提前失效可配4.反对于PWM周期可配置配备枚举5.反对于PWM宽度可配6.反对于PWM使能可配7.反对于16位计数器8.反对于16位预分频计数器9.反对于中断
2023/5/15 10:09:19 11KB Verilog
1
基于QuartusII的FPGA/CPLD方案作者:李洪伟袁斯华第1章可编程器件及EDA货物概述1.1可编程器件及其特色1.1.1CPLD1.1.2FPGA1.2EDA本领翰介及开拓软件1.2.1EDA本领1.2.2开拓软件1.3小结第2章QuartusII软件简介2.1QuartusII概述2.2方案软件2.3QuartusII体系特色总览2.4QuartusII体系配置配备枚举与装置2.5QuartusII集成货物及其底子成果2.6小结第3章QuartusII方案指南3.1QuartusII软件的使用概述3.2建树QuartusII工程3.3多种方案输入方式3.3.1文本编纂——ALDL、VHDL,VerilogHDL3.3.2图形方案输入3.4建树文本编纂文件3.5方案综合3.6引脚调配3.7仿真验证3.8时序阐发3.8.1时序阐发底子参数3.8.2指按时序申请3.8.3实现时序阐发3.8.4查验时序阐发下场3.9编程以及配置配备枚举3.10SignalTapII逻辑阐发仪的使用3.10.1在方案中建树SignalTapII逻辑阐发仪3.10.2行使MegaWizardPlug—InManager建树SignalTapII逻辑阐发仪3.10.3SignalT印II逻辑阐发仪的器件编程3.10.4查验SignalTapII采样数据3.11实例一个带清零以及计数使能成果的模可变计数器方案第4章硬件描摹语言(HDL)简介4.1HDL阻滞4.2多少种具备代表性的HDL语言4.2.1VHDL4.2.2VerilogHDL4.2.3Superlog4.2.4SystemC4.3种种HDL语言的体系结谈判方案方式4.3.1SystemC4.3.2Supeflog4.3.3Verilog以及VHDL在各方面的比力4.4目前可取的可行策略以及方式4.5未来阻滞以及本领倾向4.6国内阻滞的策略遴选4.7特色4.8VHDL方案流程4.9小结第5章VHDL法度圭表标准的底子结构5.1实体5.2结构体及其子结构描摹5.2.1结构体5.2.2VHDL子结构描摹5.3库与包群集及配置配备枚举5.3.1库(Library)5.3.2包群集(Package)5.3.3配置配备枚举(Configuration)5.4小结第6章用QuartusII方案罕用电路6.1组合逻辑电路方案6.1.1用VHDL描摹的译码器6.1.2用VHDL描摹的编码器6.1.3乘法器6.2时序逻辑电路方案6.2.1D触发器(DFF)6.2.2寄存器以及锁存器6.2.3分频器6.3存储器方案6.3.1ROM只读存储器6.3.2随机存储器RAM6.3.3FIFO6.4有限外形机6.4.1有限外形机的描摹6.4.2外形机的使用方案举例——空调抑制体系有限外形6.5基于QuartusII的其余方案示例6.5.1双向数据总线——行使三态门结构6.5.2锁相环路(PLL)6.6小结第7章基于QuartusII的数字电路体系方案7.1实例一按键去发抖方案7.2实例二单片机以及FPGA接口逻辑方案7.3实例三交通抑制灯7.3.1方案申请7.3.2方案阐发7.3.3方案模块7.4实例四数字秒表的方案7.4.1方案申请(秒表的成果描摹)7.4.2模块成果松散7.4.3方案实现、仿真波形以及阐发7.4.4秒表展现模块7.5实例五闹钟体系的方案7.5.1闹钟体系的方案申请及方案思绪1.5.2闹钟体系的译码器的方案7.5.3闹钟体系的移位寄存器的方案7.5.4闹钟体系的闹钟寄存器以及功夫计数器的方案7.5.5闹钟体系的展现驱动器的方案7.5.6闹钟体系的分频器的方案7.5.7闹钟体系的部份组装7.6实例六数字密码锁方案7.6.1方案申请7.6.2输入、输入端口描摹7.6.3模块松散7.6.4方案VHDL源法度圭表标准7.7实例七数字出租车计费器方案7.7.1方案阐发7.7.2顶层方案7.7.3成果子模块方案7.8实例八IIC总线通讯接口7.8.1方案阐发7.8.2VHDL方案源法度圭表标准7.8.3时序仿真下场及阐发第8章MC8051单片机方案8.1MC8051单片电机路方案概述8.1.1首要方案特色8.1.28051总体结谈判方案文件阐发8.1.3各个模块阐发8.2MC8051法度圭表标准包8.3MC8051内核的方案8.4按时计数器模块8.5串口模块8.6抑制模块8.7算术逻辑模块8.8小结附录
2023/4/30 20:14:32 14.95MB Quartus FPGA CPLD
1
开telnet一、进光猫配景,用户名CMCCAdmin,密码aDm8H%MsA封锁防火墙,就可掀开telnet二、拔掉光纤线关机重启遴选培修使能主/备方式而后启动这时候光猫就末了闪灼了等到之后总数为1而后停止重启光猫这时候就开启了telnet
2023/4/21 0:06:30 1.3MB HG8546M 补全Shell 华为界面
1
cic滤波器的VHDL法度圭表标准,残缺的VHDL语言描摹的5级级联CIC滤波器。
能够取种种抽取倍数(num),当不使历时能够被旁路(bypass),时钟使能(clk_en).抽取后的盘算量小(flag)。
2023/4/6 9:02:45 3KB 5级CIC的VHDL程序
1
概述  这是一个采用i2c通信,内置了PWM驱动器和一个时钟。
这意味着,这将和TLC5940系列有很大不同。
你不需要不断发送信号占用你的单片机!  它是5V的兼容,这意味着你还可以用3.3V单片机控制并且安全地驱动到6V输出(当你想控制白色或蓝色指示灯用3.4+正电压也是可以的)地址选择引脚使你可以把62个驱动板挂在单个i2c总线上,总共有992路PWM输出。
那将是非常庞大的资源。
  约1.6Khz可调频PWM输出  为步进电机预备输出12位分辨率,这意味着在60Hz的更新率能够达到4us分辨率  可配置的推拉输出或开路输出  输出使能引脚能够快速禁用所有输出  OE引脚一定要至低使能,或者直接接地。
特性:  PCA9685芯片被包裹在小板的中央  电源输入端子  绿色电源指示灯  在4组3针连接器中方便你一次插入16个伺服电机(伺服电机的插头稍宽于0.1“,所以你可以放4对0.1”的接头)  接线板上输入的反向极性保护  级联设计 V+线上放置一个大电容(在某些场合你会需要)外围输入最大电压取决于这个10V1000uf的电容  所有PWM输出线上都放一个220欧姆系列电阻器来保护他们,并能轻易的驱动LED。
2023/3/20 23:01:07 5KB arduino pca9685 嵌入式
1
L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7V电压。
4脚VS接电源电压,VS电压范围VIH为+2.5~46V。
输出电流可达2.5A,可驱动电感性负载。
1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,构成电流传感信号。
L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。
5,7,10,12脚接输入控制电平,控制电机的正反转。
EnA,EnB接控制使能端,控制电机的停转。
表1是L298N功能逻辑图。
2023/3/7 14:26:17 95KB l298n
1
Quartus软件入门及双向数据流总线的计划;计划一个8位位宽的双向数据总线,由使能端S控制总线数据流向,当S=00,C的数据赋给A;
当S=01,A的值赋给C;
S为其他值时,B的数据赋给C。
用VHDL编程计划该双向数据总线,并观察的仿真波形结果验证双向总线的功能。
2023/2/9 0:08:32 187KB 双向数据流总线
1
单片机数模转换程序将da#include//52系列单片机头文件#include#defineucharunsignedchar#defineuintunsignedintsbitdula=P2^6;//申明U1锁存器的锁存端sbitwela=P2^7;//申明U2锁存器的锁存端sbitadwr=P3^6;//定义AD的WR端口sbitadrd=P3^7;//定义AD的RD端口sbitled=P2^5;sbitDAC0832_CS=P3^2;sbitDAC0832_WR=P3^6;sbitAD_CS=P0^7;ucharcodetable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};ucharweima[]={0xff,0xfe,0xfd,0xfb,0xf7,0xef,0xdf};voiddelayms(uintxms){uinti,j;for(i=xms;i>0;i--)//i=xms即延时约xms毫秒for(j=110;j>0;j--);}voiddisplay(ucharbai,ucharshi,ucharge)//显示子函数{dula=1;P0=table[bai]|0x80;//送段选数据dula=0;P0=0xff;//送位选数据前关闭所有显示,防止打开位选锁存时wela=1;//原来段选数据通过位选锁存器形成混乱P0=0x7e;//送位选数据wela=0;delayms(1);//延时dula=1;P0=table[shi];dula=0;P0=0xff;wela=1;P0=0x7d;wela=0;delayms(1);dula=1;P0=table[ge];dula=0;P0=0xff;wela=1;P0=0x7b;wela=0;delayms(1);}/*voiddisplays(uchara,ucharb,ucharc)//显示子函数{dula=1;P0=table[a];//送段选数据dula=0;P0=0xff;//送位选数据前关闭所有显示,防止打开位选锁存时wela=1;//原来段选数据通过位选锁存器形成混乱P0=0x77;//送位选数据wela=0;delayms(1);//延时dula=1;P0=table[b];dula=0;P0=0xff;wela=1;P0=0x6f;wela=0;delayms(1);dula=1;P0=table[c];dula=0;P0=0xff;wela=1;P0=0x5f;wela=0;delayms(1);}*/voiddisplays(ucharshuzi,ucharweizhi,bitdp){dula=1;if(dp)P0=table[shuzi]|0x80;elseP0=table[shuzi];dula=0;wela=1;P0=weima[weizhi];wela=0;}voidmain()//主程序{uintad;ucharA1,A2,A3,adval;AD_CS=1;//置CSAD为0,选通ADCS以后不必再管ADCSDAC0832_CS=0;DAC0832_WR=0;while(1){wela=1;P0=0x7f;wela=0;adwr=1;_nop_();adwr=0;//启动AD转换_nop_();adwr=1;P1=0xff;//读取P1口之前先给其写全1adrd=1;//选通ADCS_nop_();adrd=0;//AD读使能_nop_();
2018/2/21 19:13:45 3KB 51数模转换
1
单片机数模转换程序将da#include//52系列单片机头文件#include#defineucharunsignedchar#defineuintunsignedintsbitdula=P2^6;//申明U1锁存器的锁存端sbitwela=P2^7;//申明U2锁存器的锁存端sbitadwr=P3^6;//定义AD的WR端口sbitadrd=P3^7;//定义AD的RD端口sbitled=P2^5;sbitDAC0832_CS=P3^2;sbitDAC0832_WR=P3^6;sbitAD_CS=P0^7;ucharcodetable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};ucharweima[]={0xff,0xfe,0xfd,0xfb,0xf7,0xef,0xdf};voiddelayms(uintxms){uinti,j;for(i=xms;i>0;i--)//i=xms即延时约xms毫秒for(j=110;j>0;j--);}voiddisplay(ucharbai,ucharshi,ucharge)//显示子函数{dula=1;P0=table[bai]|0x80;//送段选数据dula=0;P0=0xff;//送位选数据前关闭所有显示,防止打开位选锁存时wela=1;//原来段选数据通过位选锁存器形成混乱P0=0x7e;//送位选数据wela=0;delayms(1);//延时dula=1;P0=table[shi];dula=0;P0=0xff;wela=1;P0=0x7d;wela=0;delayms(1);dula=1;P0=table[ge];dula=0;P0=0xff;wela=1;P0=0x7b;wela=0;delayms(1);}/*voiddisplays(uchara,ucharb,ucharc)//显示子函数{dula=1;P0=table[a];//送段选数据dula=0;P0=0xff;//送位选数据前关闭所有显示,防止打开位选锁存时wela=1;//原来段选数据通过位选锁存器形成混乱P0=0x77;//送位选数据wela=0;delayms(1);//延时dula=1;P0=table[b];dula=0;P0=0xff;wela=1;P0=0x6f;wela=0;delayms(1);dula=1;P0=table[c];dula=0;P0=0xff;wela=1;P0=0x5f;wela=0;delayms(1);}*/voiddisplays(ucharshuzi,ucharweizhi,bitdp){dula=1;if(dp)P0=table[shuzi]|0x80;elseP0=table[shuzi];dula=0;wela=1;P0=weima[weizhi];wela=0;}voidmain()//主程序{uintad;ucharA1,A2,A3,adval;AD_CS=1;//置CSAD为0,选通ADCS以后不必再管ADCSDAC0832_CS=0;DAC0832_WR=0;while(1){wela=1;P0=0x7f;wela=0;adwr=1;_nop_();adwr=0;//启动AD转换_nop_();adwr=1;P1=0xff;//读取P1口之前先给其写全1adrd=1;//选通ADCS_nop_();adrd=0;//AD读使能_nop_();
2019/5/4 18:48:13 3KB 51数模转换
1
共 65 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡