DaphneKoller关于ProbabilisticGraphicalModels的最权威大作,内容详实深入,是各大名校机器学习和人工智能专业相应课程的指定教材AdaptiveComputationandMachineLearningThomasdietterich,EditorChristopherBishop,DavidHeckerman,MichaelJordan,andMichaelKearns,AssociateEditorsBioinformatics:TheMachinelearningApproach,PierreBaldiandSorenBrunakReinforcementLearning:AnIntroduction,RichardS.SuttonandAndrewG.BartoGraphicalmodelsforMachineLearningandDigitalCommunication,BrendanJ.FreyLearningingraphicalModels,MichaelI.JordanCausation,Prediction,andSearch,2nded,PeterSpirtes,ClarkGlymour,andRichardScheinesPrinciplesofDataMining,DavidHand,HeikkiMannila,andPadhraicSmythBioinformatics:TheMachineLearningApproach,2nded,PierreBaldiandSorenBrunakLearningKernelclassifiers:TheoryandAlgorithms,RalfHerbrichLearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyond,BernhardScholkopfandAlexanderJsmolaIntroductiontoMachineLearning,EthemAlpaydinGaussianProcessesforMachineLearning,CarlEdwardRasmussenandChristopherK.I.WilliamsSemi-SupervisedLearning,OlivierChapelle,BernhardScholkopf,andAlexanderZien,edsTheMinimumdescriptionLengthPrinciple,PeterDGrunwaldIntroductiontoStatisticalRelationalLearning,liseGetoorandBenTaskar,edsProbabilisticGraphicalModels:PrinciplesandTechniques,DaphneKollerandNirFriedmanProbabilisticGraphicalModelsPrinciplesandTechniquesDaphnekollerNirfriedmanThemitpressCambridge,MassachusettsLondon,England@2009MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisherForinformationaboutspecialquantitydiscounts,pleaseemailspecial_sales@mitpress.mit.eduThisbookwassetbytheauthorsinBlFX2EPrintedandboundintheunitedstatesofamericaLibraryofCongressCataloging-in-PublicationDataKoller,DaphneProbabilisticGraphicalModels:PrinciplesandTechniquesDaphneKollerandNirFriedmanpcm.-(Adaptivecomputationandmachinelearning)IncludesbibliographicalreferencesandindexisBn978-0-262-01319-2(hardcover:alk.paper1.Graphicalmodeling(Statistics)2.Bayesianstatisticaldecisiontheory--Graphicmethods.IKoller,Daphne.II.Friedman,NirQA279.5.K652010519.5’420285-dc222009008615109876543ToourfamiliesmyparentsDovandditzamyhusbanddanmydaughtersnatalieandmayaDKmyparentsNogaandGadmywifemychildrenroyandliorMEAsfarasthelawsofmathematicsrefertoreality,theyarenotcertain,asfarastheyarecertain,theydonotrefertorealityAlberteinstein1956Whenwetrytopickoutanythingbyitself,wefindthatitisboundfastbyathousandinvisiblecordsthatcannotbebroken,toeverythingintheuniverseJohnMuir,1869Theactualscienceoflogicisconversantatpresentonlywiththingseithercertain,impossible,orentirelydoubtful.Thereforethetruelogicforthisworldisthecalculusofprobabilities,whichtakesaccountofthemagnitudeoftheprobabilitywhichis,oroughttobe,inareasonableman'smindJamesClerkMaxwell,1850Thetheoryofprobabilitiesisatbottomnothingbutcommonsensereducedtocalculus;itenablesustoappreciatewithexactnessthatwhichaccuratemindsfeelwithasortofinstinctforwhichofttimestheyareunabletoaccount.PierreSimonLaplace,1819MisunderstandingofprobabilitymaybethegreatestofallimpedimentstoscientificliteracyStephenJayGouldContentsAcknowledgmentsListoffiguresListofalgorithmsListofboxesXXX1IntroductionL1Motivation11.2StructuredProbabilisticModels21.2.1ProbabilisticGraphicalModels31.2.2Representation,Inference,Learning51.3Overviewandroadmap61.3.1OverviewofChapters61.3.2Readersguide1.3.3ConnectiontoOtherDisciplines1.4Historicalnotes122Foundations2.1ProbabilityTheory2.1.1ProbabilityDistributions152.1.2BasicConceptsinProbability182.1.3RandomVariablesandJointDistributions192.1.4IndependenceandConditionalIndependence2:2.1.5QueryingaDistribution2.1.6ContinuousSpaces272.1.7ExpectationandVariance312.2Graphs342.2.1Nodesandedges342.2.2Subgraphs352.2.3Pathsandtrails36
2025/8/27 2:53:35 7.51MB PGM
1
PDF版,HenryStarkJohnW.Woods第四版Probability,Statistics,andRandomProcessesforEngineers习题解答。
2025/8/14 12:57:23 2.55MB 习题解答
1
使用redmine缺陷管理工具的测试人员注意了,本代码是实现统计redmine的数据(本阶段、本版本、严重等级、指派人员、结构分布情况),并实现自动化发送阶段性测试报告邮件脚本,也有现成的exe程序,大家可是试试(exe是使用内网地址,大家可能会运行失败,这也是保证公司机密不被泄露),如果大家有问题,可以随时私聊我
2025/4/2 15:35:38 31.75MB redmine python
1
摘要:本文介绍了如何将用户自定义的功能模块与IBMSPSSStatistics进行集成,如何利用Statistics提供的统计分析方法对功能模块的输入数据进行预处理,并对集成结果进行分析与演示。
近年来,商业分析(BusinessAnalytics,BA)软件逐渐成为企业增强洞察力的利器。
其中,IBMSPSSStatistics是统计分析领域中久享盛名的应用软件。
企业在实际运营中,已根据不同的业务需求,开发或购买了满足自身需求的商业数据整合方案,并期待与Statistics进行集成,以便更高效、准确的分析数据,提取数据中隐含的信息。
Statistics不仅为用户提供了丰富的统计算法来帮助用户分析
1
Statisticalmethodsareakeypartofofdatascience,yetveryfewdatascientistshaveanyformalstatisticstraining.Coursesandbooksonbasicstatisticsrarelycoverthetopicfromadatascienceperspective.Thispracticalguideexplainshowtoapplyvariousstatisticalmethodstodatascience,tellsyouhowtoavoidtheirmisuse,andgivesyouadviceonwhat'simportantandwhat'snot.Manydatascienceresourcesincorporatestatisticalmethodsbutlackadeeperstatisticalperspective.Ifyou'refamiliarwiththeRprogramminglanguage,andhavesomeexposuretostatistics,thisquickreferencebridgesthegapinanaccessible,readableformat.Whyexploratorydataanalysisisakeypreliminarystepindatascience;Howrandomsamplingcanreducebiasandyieldahigherqualitydataset,evenwithbigdata;Howtheprinciplesofexperimentaldesignyielddefinitiveanswerstoquestions;Howtouseregressiontoestimateoutcomesanddetectanomalies;Keyclassificationtechniquesforpredictingwhichcategoriesarecordbelongsto;Statisticalmachinelearningmethodsthat"learn"fromdata;Unsupervisedlearningmethodsforextractingmeaningfromunlabeleddata.
1
DetailsTitle:DigitalImageProcessing,4thEditionAuthor:RafaelC.Gonzalez,RichardE.WoodsLength:1192pagesEdition:4Language:EnglishPublisher:PearsonPublicationDate:2017-03-30ISBN-10:0133356728ISBN-13:9780133356724SalesRank:#680902(SeeTop100Books)CategoriesComputers&TechnologyEngineering&TransportationEngineeringTextbooksDescriptionIntroduceyourstudentstoimageprocessingwiththeindustry’smostprizedtextFor40years,ImageProcessinghasbeenthefoundationaltextforthestudyofdigitalimageprocessing.Thebookissuitedforstudentsatthecollegeseniorandfirst-yeargraduatelevelwithpriorbackgroundinmathematicalanalysis,vectors,matrices,probability,statistics,linearsystems,andcomputerprogramming.Asinallearliereditions,thefocusofthiseditionofthebookisonfundamentals.The4thEdition,whichcelebratesthebook’s40thanniversary,isbasedonanextensivesurveyoffaculty,students,andindependentreadersin150institutionsfrom30countries.Theirfeedbackledtoexpandedornewcoverageoftopicssuchasdeeplearninganddeepneuralnetworks,includingconvolutionalneuralnets,thescale-invariantfeaturetransform(SIFT),maximally-stableextremalregions(MSERs),graphcuts,k-meansclusteringandsuperpixels,activecontours(snakesandlevelsets),andexacthistogrammatching.?Majorimprovementsweremadeinreorganizingthematerialonimagetransformsintoamorecohesivepresentation,andinthediscussionofspatialkernelsandspatialfiltering.?Majorrevisionsandadditionsweremadetoexamplesandhomeworkexercisesthroughoutthebook.Forthefirsttime,weaddedMATLABprojectsattheendofeverychapter,andcompiledsupportpackagesforyouandyourteachercontaining,solutions,imagedatabases,andsamplecode.Thesupportmaterialsforthistitlecanbefoundatwww.ImageProcessingPlace.com
2024/12/18 9:19:49 85.78MB CV 计算机视觉 图像处理 ImageProcessing
1
PrefaceIwrotethisbooktohelpmachinelearningpractitioners,likeyou,getontopoflinearalgebra,fast.LinearAlgebraIsImportantinMachineLearningThereisnodoubtthatlinearalgebraisimportantinmachinelearning.Linearalgebraisthemathematicsofdata.It’sallvectorsandmatricesofnumbers.Modernstatisticsisdescribedusingthenotationoflinearalgebraandmodernstatisticalmethodsharnessthetoolsoflinearalgebra.Modernmachinelearningmethodsaredescribedthesameway,usingthenotationsandtoolsdrawndirectlyfromlinearalgebra.Evensomeclassicalmethodsusedinthefield,suchaslinearregressionvialinearleastsquaresandsingular-valuedecomposition,arelinearalgebramethods,andothermethods,suchasprincipalcomponentanalysis,werebornfromthemarriageoflinearalgebraandstatistics.Toreadandunderstandmachinelearning,youmustbeabletoreadandunderstandlinearalgebra.PractitionersStudyLinearAlgebraTooEarlyIfyouaskhowtogetstartedinmachinelearning,youwillverylikelybetoldtostartwithlinearalgebra.Weknowthatknowledgeoflinearalgebraiscriticallyimportant,butitdoesnothavetobetheplacetostart.Learninglinearalgebrafirst,thencalculus,probability,statistics,andeventuallymachinelearningtheoryisalongandslowbottom-uppath.Abetterfitfordevelopersistostartwithsystematicproceduresthatgetresults,andworkbacktothedeeperunderstandingoftheory,usingworkingresultsasacontext.Icallthisthetop-downorresults-firstapproachtomachinelearning,andlinearalgebraisnotthefirststep,butperhapsthesecondorthird.PractitionersStudyTooMuchLinearAlgebraWhenpractitionersdocirclebacktostudylinearalgebra,theylearnfarmoreofthefieldthanisrequiredfororrelevanttomachinelearning.Linearalgebraisalargefieldofstudythathastendrilsintoengineering,physicsandquantumphysics.Therearealso
2024/8/4 20:55:46 2.47MB Machine Lear mastery
1
经典教材的详细答案,让你学习不在苦恼,不在彷徨,让你赢在起跑线上。
2024/6/19 18:03:27 2.55MB random sequence
1
Probability,Statistics,andRandomProcessesforEngineers(4thEdition).pdf
2024/6/18 5:31:56 8.22MB Probability
1
IntroductiontoMathematicalStatistics(7thEdition)byRobertV.Hogg,JoesephMcKean,AllenTCraighttp://www.amazon.com/Introduction-Mathematical-Statistics-7th-Edition/dp/0321795431
2024/6/13 5:46:51 4.26MB statistics
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡