上传者: zhuxiaojian2132
|
上传时间:2025/8/27 2:53:35
|
文件大小:7.51MB
|
文件类型:pdf
ProbabilisticGraphicalModelsPrinciplesandTechniques-其它文档类资源
DaphneKoller关于ProbabilisticGraphicalModels的最权威大作,内容详实深入,是各大名校机器学习和人工智能专业相应课程的指定教材AdaptiveComputationandMachineLearningThomasdietterich,EditorChristopherBishop,DavidHeckerman,MichaelJordan,andMichaelKearns,AssociateEditorsBioinformatics:TheMachinelearningApproach,PierreBaldiandSorenBrunakReinforcementLearning:AnIntroduction,RichardS.SuttonandAndrewG.BartoGraphicalmodelsforMachineLearningandDigitalCommunication,BrendanJ.FreyLearningingraphicalModels,MichaelI.JordanCausation,Prediction,andSearch,2nded,PeterSpirtes,ClarkGlymour,andRichardScheinesPrinciplesofDataMining,DavidHand,HeikkiMannila,andPadhraicSmythBioinformatics:TheMachineLearningApproach,2nded,PierreBaldiandSorenBrunakLearningKernelclassifiers:TheoryandAlgorithms,RalfHerbrichLearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyond,BernhardScholkopfandAlexanderJsmolaIntroductiontoMachineLearning,EthemAlpaydinGaussianProcessesforMachineLearning,CarlEdwardRasmussenandChristopherK.I.WilliamsSemi-SupervisedLearning,OlivierChapelle,BernhardScholkopf,andAlexanderZien,edsTheMinimumdescriptionLengthPrinciple,PeterDGrunwaldIntroductiontoStatisticalRelationalLearning,liseGetoorandBenTaskar,edsProbabilisticGraphicalModels:PrinciplesandTechniques,DaphneKollerandNirFriedmanProbabilisticGraphicalModelsPrinciplesandTechniquesDaphnekollerNirfriedmanThemitpressCambridge,MassachusettsLondon,England@2009MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisherForinformationaboutspecialquantitydiscounts,pleaseemailspecial_sales@mitpress.mit.eduThisbookwassetbytheauthorsinBlFX2EPrintedandboundintheunitedstatesofamericaLibraryofCongressCataloging-in-PublicationDataKoller,DaphneProbabilisticGraphicalModels:PrinciplesandTechniquesDaphneKollerandNirFriedmanpcm.-(Adaptivecomputationandmachinelearning)IncludesbibliographicalreferencesandindexisBn978-0-262-01319-2(hardcover:alk.paper1.Graphicalmodeling(Statistics)2.Bayesianstatisticaldecisiontheory--Graphicmethods.IKoller,Daphne.II.Friedman,NirQA279.5.K652010519.5’420285-dc222009008615109876543ToourfamiliesmyparentsDovandditzamyhusbanddanmydaughtersnatalieandmayaDKmyparentsNogaandGadmywifemychildrenroyandliorMEAsfarasthelawsofmathematicsrefertoreality,theyarenotcertain,asfarastheyarecertain,theydonotrefertorealityAlberteinstein1956Whenwetrytopickoutanythingbyitself,wefindthatitisboundfastbyathousandinvisiblecordsthatcannotbebroken,toeverythingintheuniverseJohnMuir,1869Theactualscienceoflogicisconversantatpresentonlywiththingseithercertain,impossible,orentirelydoubtful.Thereforethetruelogicforthisworldisthecalculusofprobabilities,whichtakesaccountofthemagnitudeoftheprobabilitywhichis,oroughttobe,inareasonableman'smindJamesClerkMaxwell,1850Thetheoryofprobabilitiesisatbottomnothingbutcommonsensereducedtocalculus;itenablesustoappreciatewithexactnessthatwhichaccuratemindsfeelwithasortofinstinctforwhichofttimestheyareunabletoaccount.PierreSimonLaplace,1819MisunderstandingofprobabilitymaybethegreatestofallimpedimentstoscientificliteracyStephenJayGouldContentsAcknowledgmentsListoffiguresListofalgorithmsListofboxesXXX1IntroductionL1Motivation11.2StructuredProbabilisticModels21.2.1ProbabilisticGraphicalModels31.2.2Representation,Inference,Learning51.3Overviewandroadmap61.3.1OverviewofChapters61.3.2Readersguide1.3.3ConnectiontoOtherDisciplines1.4Historicalnotes122Foundations2.1ProbabilityTheory2.1.1ProbabilityDistributions152.1.2BasicConceptsinProbability182.1.3RandomVariablesandJointDistributions192.1.4IndependenceandConditionalIndependence2:2.1.5QueryingaDistribution2.1.6ContinuousSpaces272.1.7ExpectationandVariance312.2Graphs342.2.1Nodesandedges342.2.2Subgraphs352.2.3Pathsandtrails36
本软件ID:8507623