《Science》杂志-机器学习究竟将如何影响人类未来的工作-中文版+英文原版,帮助大家对于机器学习最新的发展趋势进行了解
2024/10/8 10:37:40 1.91MB 机器学习
1
RodriguezA,LaioA.Clusteringbyfastsearchandfindofdensitypeaks[J].Science,2014,344(6191):1492-1496.基于这篇文章实现的最基本的密度聚类的算法密度峰值聚类py代码
2024/7/31 15:56:15 7.73MB 密度峰值聚类
1
等距映射的源代码,使用MATLAB编写,具体方法可见2000年Science文献
2024/4/15 0:05:30 579KB ISOMAP,模式识别,降维
1
Writing_Science_How_to_Write_Papers_That_Get_Cited_and_Proposals_That_Get_Funded
2024/2/24 3:02:03 3.58MB 书籍 英语写作
1
NUMERICALOPTIMIZATIONpresentsacomprehensiveandup-to-datedescriptionofthemosteffectivemethodsincontinuousoptimization.Itrespondstothegrowinginterestinoptimizationinengineering,science,andbusinessbyfocusingonthemethodsthatarebestsuitedtopracticalproblems.Drawingontheirexperiencesinteaching,research,andconsulting,theauthorshaveproducedatextbookthatwillbeofinteresttostudentsandpractitionersalike.Eachchapterbeginswiththebasicconceptsandbuildsupgraduallytothebesttechniquescurrentlyavailable.Becauseoftheemphasisonpracticalmethods,aswellastheextensiveillustrationsandexercises,thebookisaccessibletoawideaudience.Itcanbeusedasagraduatetextinengineering,operationsresearch,mathematics,computerscience,andbusiness.Italsoservesasahandbookforresearchersandpractitionersinthearea.Aboveall,theauthorshavestrivedtoproduceatextthatispleasanttoread,informativeandrigorous--onethatrevealsboththebeautifulnatureofthedisciplineanditspracticalside.
2024/1/21 10:52:09 4.18MB optimization
1
Jordan和Mitchell两位Machinelearning大牛在Science杂志综述长文——机器学习发展趋势和前景
2024/1/13 16:07:22 1.38MB Science 机器学习
1
RodriguezA,LaioA.Clusteringbyfastsearchandfindofdensitypeaks[J].Science,2014,344(6191):1492-1496.基于这篇文章实现的最基本的密度聚类的算法,具体请看我博客中的相关文章http://blog.csdn.net/kryolith/article/details/39832573
2023/9/19 11:33:43 4KB Clustering Python Methodology
1
这是一篇来自science杂志的论文,极其典型!介绍了测地距离在流行降维中的使用。
Scientistsworkingwithlargevolumesofhigh-dimensionaldata,suchasglobalclimatepatterns,stellarspectra,orhumangenedistributions,regularlyconfronttheproblemofdimensionalityreduction:Þndingmeaningfullow-dimensionalstructureshiddenintheirhigh-dimensionalobservations.Thehumanbrainconfrontsthesameproblemineverydayperception,extractingfromitshigh-dimensionalsensoryinputsÑ30,000auditorynerveÞbersor106opticnerveÞbersÑamanageablysmallnumberofperceptuallyrelevantfeatures.Herewedescribeanapproachtosolvingdimensionalityreductionproblemsthatuseseasilymeasuredlocalmetricinformationtolearntheunderlyingglobalgeometryofadataset.Unlikeclassicaltechniquessuchasprincipalcomponentanalysis(PCA)andmultidimensionalscaling(MDS),ourapproachiscapableofdiscoveringthenonlineardegreesoffreedomthatunderliecomplexnaturalobservations,suchashumanhandwritingorimagesofafaceunderdifferentviewingconditions.Incontrasttopreviousalgorithmsfornonlineardimensionalityreduction,oursefÞcientlycomputesagloballyoptimalsolution,and,foranimportantclassofdatamanifolds,isguaranteedtoconvergeasymptoticallytothetruestructure.
2023/5/7 14:11:41 689KB 测地距离 科学 论文
1
文章中文翻译,整理成文档方便看。
出处:http://blog.csdn.net/itplus/article/details/38926837接待转载/分享,但请务必声明文章出处.
2023/3/15 19:29:12 2.57MB science 聚类
1
Firstrelease:26October2017www.sciencemag.org(Pagenumbersnotfinalattimeoffirstrelease)1Theabilitytolearnandgeneralizefromafewexamplesisahallmarkofhumanintelligence(1).CAPTCHAs,imagesusedbywebsitestoblockautomatedinteractions,areexamplesofproblemsthatareeasyforhumansbutdifficultforcomput-ers.CAPTCHAsarehardforalgorithmsbecausetheyaddclutterandcrowdletterstogethertocreateachicken-and-eggproblemforcharacterclassifiers—theclassifiersworkwellforcharactersthathavebeensegmentedout,butsegmentingtheindividualcharactersrequiresanunderstandingofthecharacters,eachofwhichmightberenderedinacombinato-rialnumberofways(2–5).Arecentdeep-learningapproachforparsingonespecificCAPTCHAstylerequiredmillionsoflabeledexamplesfromit(6),andearlierapproachesmostlyreliedonhand-craftedstyle-specificheuristicstosegmentoutthecharacter(3,7);whereashumanscansolvenewstyleswithoutexplicittraining(Fig.1A).Thewidevarietyofwaysinwhichletterformscouldberenderedandstillbeunder-stoodbypeopleisillustratedinFig.1.Buildingmodelsthatgeneralizewellbeyondtheirtrain-ingdistributionisanimportantsteptowardtheflexibilityDouglasHofstadterenvisionedwhenhesaidthat“foranyprogramtohandleletterformswiththeflexibilitythathumanbeingsdo,itwouldhavetopossessfull-scaleartificialintelli-gence”(8).Manyresearchershaveconjecturedthatthiscouldbeachievedbyincorporatingtheinductivebiasesofthevis-ualcortex(9–12),utilizingthewealthofdatageneratedbyneuroscienceandcognitivescienceresearch.Inthema妹妹a-lianbrain,feedbackconnectionsinthevisualcortexplayrolesinfigure-ground-segmentation,andinobject-basedtop-downattentionthatisolatesthecontoursofanobjectevenwhenpartiallytransparentobjectsoccupythesamespatiallocations(13–16).Lateralconnectionsinthevisualco
2023/2/15 22:41:07 14.88MB FCN网络
1
共 15 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡