阿伦方差的讲解文献,关于时频分析、噪声分析、红外光学检测误差分析等,还有matlab源代码
2025/6/11 11:23:15 4.94MB 阿伦方差
1
详细记录光电放大器在设计过程中遇到的问题,包括噪声分析,稳定性分析
2025/5/24 11:55:15 1.56MB 光电放大
1
是matlab在通信中的应用实例,包括BFSK在高斯白噪声信道,瑞利信道,伦琴信道中传输仿真,DPCM与PCM系统的量化噪声分析,PAM,QAM,频分复用,TDMA,AM,DSB,FM,DPCM,DM仿真,相当好的
2025/5/6 22:06:10 67KB matlab 仿真 通信
1
本文档是以ABB公司具体仿真为参考,通过对仿真过程及仿真结果的分析,阐述了噪声在变压器中的影响。
2025/4/9 12:07:08 5.52MB comsol 变压器 噪声 ABB
1
本文介绍了一种通带发射参考脉冲簇(TRPC)超宽带(UWB)通信系统的接收机设计,并分析了本地振荡器固有的相位噪声存在下的误码率(BEP)。
基于相位噪声振荡器的统一模型,获得了理论BEP表达式,以评估相位噪声对密集多径信道中TRPC-UWB通信的BEP性能的影响。
在实际的IEEE802.15.4a信道模型下,还将提供和讨论半分析结果。
1
optisystem仿真实例OptiSystem仿真实例目录1 光发送机(OpticalTransmitters)设计1.1 光发送机简介1.2 光发送机设计模型案例:铌酸锂(LiNbO3)型Mach-Zehnder调制器的啁啾(Chirp)分析2 光接收机(OpticalReceivers)设计2.1 光接收机简介2.2 光接收机设计模型案例:PIN光电二极管的噪声分析3 光纤(OpticalFiber)系统设计3.1 光纤简介3.2 光纤设计模型案例:自相位调制(SPM)导致脉冲展宽分析
2025/1/2 7:21:03 2.03MB optisystem
1
讲解了流体噪声分析的步骤和流程,运用starccm进行流体噪声模拟。
2024/4/20 1:29:22 2.96MB Star ccm
1
基于labview开发的一个噪声采集和分析的软件。
采集部分通过DAQ采集,分析部分有时域分析,频域分析,时频分析,以及其他一些噪声分析的功能
2024/3/13 12:34:44 275KB labview 噪声采集 噪声分析
1
用matlab详细编写了一个ALLAN方差的程序,经过了调试可以绘制角度随机游走、速率斜坡等噪声分析模型。
2023/11/9 1:06:27 2KB allan方差
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡