1)利用pca及svm实现表情识别;
2)包含训练代码,代码完整可靠;
3)代码详细,封装性好,正文全面,易于理解;
4)请放心下载。
2017/10/12 15:30:50 5.46MB 表情识别 源代码 pca svm
1
邹博小象学院机器学习课程全套代码。
回归、svm、聚类等常规算法都有,很片面。
2018/5/2 8:47:47 102.63MB 邹博 机器学习
1
这是本人本科做的毕业设计,根据opencv里面人体检测的HOG代码改写,加上了完整的注释(opencv里面是没有任何注释的),并且增加了样本的训练(代码中只提供了PCA50-HOG的检测算子,如有其它需要可以自行训练),线性检测时使用线性SVM优化,高斯检测时使用PCA的降维。
同时对候选区域整合代码做了简化处理。
最后感谢网上的各位好心人提供的各类资源,在毕业设计过程中给予了我很大协助。
鉴于网上仍然还有若干未解决的问题,今天把我所做的也分享给大家,希望能给还在探索ing的朋友一些启发。
如果有任何问题请留言或者email。
2018/5/3 18:47:12 16.04MB HOG PCA 人体检测 人体识别
1
本文设计了一种基于支持向量机(SVM)的运动目标识别算法,以对运动目标进行准确的识别和分类。
鉴于支持向量机在小样本,非线性和高维模式识别方面的优势,构造了一种基于支持向量机的分类器。
利用形状特征构成的特征向量分类样本对支持向量机进行训练和分类,结合支持向量机和二叉决策树构成多分类器。
对象特征向量用作SVM的输入,我们将使用分类器对检测到的运动对象进行分类。
实验结果表明,该算法能够准确识别和分类视频图像中的不同对象。
2021/9/4 2:30:54 299KB Object recognition support vector
1
SVM多分类,SVM书籍上一般只介绍了二分类问题,本文章给出了使用SVM进行多分类的处理方案。
2020/7/6 9:23:21 407KB SVM多分类
1
内含SVM(支持向量机)算法的实现回归拟合,以混凝土抗压强度预测为例,含具体代码正文
2016/9/3 11:50:14 4KB MATLAB程序 SVM算法 回归拟合程序
1
支持向量机(supportvectormachine,SVM)是数据挖掘中的一项新技术,是借助于最优化方法解决机器学习问题的新工具。
它成为克服“维数灾难”和“过学习”等传统困难的有效办法,虽然他还处在飞速发展的阶段,但它的理论基础和实现途径的基本框架已经构成。
支持向量机目前主要用来解决分类问题(模式识别,判别分析)和回归问题。
而股市行为预测通常为预测股市数据的走势和预测股市数据的未来数值。
而当我们将走势看作两种状态(涨、跌),问题便转化为分类问题,而预测股市未来的价格是指为典型的回归问题。
我们有理由相信支持向量机可以对股市进行预测。
本报告是支持向量机对股票价格预测应用报告的综述,旨在于介绍预测股票价格走势的SVM简单预测模型。
该模型可以用来预测未来若干天股票价格的大体走势,这对于股票投资可以起到很好的指导性作用。
2018/9/1 10:39:25 999KB 支持向量机 股票预测
1
这是关于:支持向量机的基本内容-从零推导支持向量机(SVM)
2021/1/3 1:09:34 509KB SVM
1
本人训练SVM分类器进行HOG行人检测.环境为VS2010+OpenCV2.4.4.使用时请自行修改工程的include目录和lib目录配置。
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。
负样本是从不包含人体的图片中随机裁取的,大小同样是64*128。
SVM使用的是OpenCV自带的CvSVM类。
2016/1/26 4:29:46 23.65MB SVM HOG 自己训练
1
本项目即拿MFC做了一个画板,画一个数字后可自行识别数字。
有保存图片,清空画板功能,简单实用。
识别方法为SVM,调用已经训练好的MNIST数据集"SVM_DATA.xml"训练方法自行百度,一大堆。


基于OpenCv2.4.6,下载的朋友自行修改配置为本人使用的OpenCv版本即可。
2020/5/12 19:21:26 10.93MB SVM MNIST
1
共 475 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡