首页 人工智能 机器学习     /    邹博机器学习全套代码

邹博机器学习全套代码

上传者: qq_14903801 | 上传时间:2018/5/2 8:47:47 | 文件大小:102.63MB | 文件类型:rar
邹博机器学习全套代码
邹博小象学院机器学习课程全套代码。
回归、svm、聚类等常规算法都有,很片面。
本软件ID:10271388

文件下载

资源详情

[{"title":"(49个子文件102.63MB)邹博机器学习全套代码","children":[{"title":"代码","children":[{"title":"18.EM代码.zip <span style='color:#111;'>13.86KB</span>","children":null,"spread":false},{"title":"12.XGBoost代码.zip <span style='color:#111;'>137.58KB</span>","children":null,"spread":false},{"title":"10.RandomForest代码.zip <span style='color:#111;'>32.44MB</span>","children":null,"spread":false},{"title":"6.7.WordCloud.zip <span style='color:#111;'>1.36KB</span>","children":null,"spread":false},{"title":"4.Python代码","children":[{"title":"4.Python","children":[{"title":"4.1.intro.py <span style='color:#111;'>18.72KB</span>","children":null,"spread":false},{"title":"4.3.calc_sin.py <span style='color:#111;'>1.17KB</span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'>687B</span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'>26.26KB</span>","children":null,"spread":false},{"title":"4.Python.iml <span style='color:#111;'>459B</span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'>268B</span>","children":null,"spread":false}],"spread":true},{"title":"4.2.calc_e.py <span style='color:#111;'>1.31KB</span>","children":null,"spread":false},{"title":"4.5.pi.py <span style='color:#111;'>173B</span>","children":null,"spread":false},{"title":"4.6.Ensumble.py <span style='color:#111;'>1018B</span>","children":null,"spread":false},{"title":"4.4.class_intro.py <span style='color:#111;'>1.11KB</span>","children":null,"spread":false},{"title":"4.7.Benford.py <span style='color:#111;'>2.26KB</span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'>210B</span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'>14.39KB</span>","children":null,"spread":false},{"title":"4.Python代码.iml <span style='color:#111;'>284B</span>","children":null,"spread":false},{"title":"inspectionProfiles","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'>280B</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"8.Regression代码(1).zip <span style='color:#111;'>37.89KB</span>","children":null,"spread":false},{"title":"14.SVM代码.zip <span style='color:#111;'>13.85MB</span>","children":null,"spread":false},{"title":"4.Python代码.zip <span style='color:#111;'>15.36KB</span>","children":null,"spread":false},{"title":"22.LDA_代码.zip <span style='color:#111;'>5.32MB</span>","children":null,"spread":false},{"title":"12.XGBoost","children":[{"title":"agaricus_train.txt <span style='color:#111;'>721.84KB</span>","children":null,"spread":false},{"title":"Titanic.train.csv <span style='color:#111;'>59.76KB</span>","children":null,"spread":false},{"title":"12.1.xgBoost_Intro.py <span style='color:#111;'>1.46KB</span>","children":null,"spread":false},{"title":"12.3.xgBoost_Wine.py <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"12.4.xgBoost_ReadData.py <span style='color:#111;'>1.58KB</span>","children":null,"spread":false},{"title":"agaricus.txt <span style='color:#111;'>3.13KB</span>","children":null,"spread":false},{"title":"Titannic_Meta.txt <span style='color:#111;'>1.49KB</span>","children":null,"spread":false},{"title":"12.2.xgBoost_Predict.py <span style='color:#111;'>1.17KB</span>","children":null,"spread":false},{"title":"Titanic.test.csv <span style='color:#111;'>27.96KB</span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'>687B</span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'>24.69KB</span>","children":null,"spread":false},{"title":"12.XGBoost.iml <span style='color:#111;'>459B</span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'>272B</span>","children":null,"spread":false}],"spread":false},{"title":"agaricus_test.txt <span style='color:#111;'>178.57KB</span>","children":null,"spread":false},{"title":"Titanic.train_Prime.csv <span style='color:#111;'>59.76KB</span>","children":null,"spread":false},{"title":"wine.data <span style='color:#111;'>10.53KB</span>","children":null,"spread":false},{"title":"12.5.Titanic.py <span style='color:#111;'>5.49KB</span>","children":null,"spread":false},{"title":"wine_names <span style='color:#111;'>2.96KB</span>","children":null,"spread":false},{"title":"New_Data.csv <span style='color:#111;'>70.78KB</span>","children":null,"spread":false}],"spread":false},{"title":"8.Regression代码.zip <span style='color:#111;'>37.89KB</span>","children":null,"spread":false},{"title":"24.HMM_代码.zip <span style='color:#111;'>32.30MB</span>","children":null,"spread":false},{"title":"6.Data代码.zip <span style='color:#111;'>13.75MB</span>","children":null,"spread":false},{"title":"5.Package代码.zip <span style='color:#111;'>746.20KB</span>","children":null,"spread":false},{"title":"20.BayesianNetwork代码.zip <span style='color:#111;'>2.59MB</span>","children":null,"spread":false},{"title":"16.Clustering代码.zip <span style='color:#111;'>3.15MB</span>","children":null,"spread":false},{"title":"xgboost-master-(windows上的编译包).zip <span style='color:#111;'>1.13MB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • leichangqing:
    非常好的资料2019-02-27
  • qq_23617549:
    谢谢分享,感觉太贵了2018-12-02
  • longxiafei:
    程序都有,还可以2018-11-07
  • jiangdong2018:
    非常好的资料2018-10-22
  • _Cheungabriel_:
    还不错,顶一哈2018-09-14

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明