factoryio
2025/5/8 11:13:05 3.81MB 虚拟工厂
1stOpt(FirstOptimization)是七维高科有限公司(7D-SoftHighTechnologyInc.)独立开发,拥有完全自主知识产权的一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂工程模型参数估算求解等领域傲视群雄,首屈一指,居世界领先地位。
除去简单易用的界面,其计算核心是基于七维高科有限公司科研人员十数年的革命性研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
以非线性回归为例,目前世界上在该领域最有名的软件工具包诸如OriginPro,Matlab,SAS,SPSS,DataFit,GraphPad,TableCurve2D,TableCurve3D等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(大于90%),从任一随机初始值开始,都能求得正确结果。
2025/5/7 20:48:31 1.1MB 1stopt nihe
缺陷检测数据集,带标签。
数据量500+。
从网站上下载的。
2025/5/7 10:10:45 217.48MB CNN
采用mobilenet_v1替换原作者采用的resnet50,对于coco2014数据集进行重新训练,迭代了160k次,最终得到的模型模型大小为93m,原模型270多m,同时运算速度大大的提升了,感兴趣的同学可以去下载一下,不用gpu,可以直接在配置好环境的CPU就可以跑起来!
该文档主要是bert论文的Python代码实现,在多个数据集实现较好效果
2025/5/6 8:30:35 2.48MB bert Python
内部包含R-CNN、FastRCNN、FasterRCNN、SPP、SSD、SegNet、YOLOv1~v3、FCN共十篇目标检测的论文原文。
2025/5/3 8:40:04 30.97MB 目标检测
gitchat资料。
从零开始学习BP神经网络。
本文主要叙述了经典的全连接神经网络结构以及前向传播和反向传播的过程。
通过本文的学习,读者应该可以独立推导全连接神经网络的传播过程,对算法的细节烂熟于心。
另外,由于本文里的公式大部分是我自己推导的,所以可能会有瑕疵,希望读者不吝赐教。
  虽然这篇文章实现的例子并没有什么实际应用场景,但是自己推导一下这些数学公式对理解神经网络内部的原理很有帮助,继这篇博客之后,我还计划写一个如何自己推导并实现卷积神经网络的教程,如果有人感兴趣,请继续关注我!
AlexNet的tensorflow实现+完整工程代码+同为学习的可以拿去参考
2025/5/1 22:48:40 1.49MB alexnet tensorflow
glove.6B.50d数据
2025/5/1 16:39:13 61.18MB NLP
Faster-RCNN在linuxtensorflowpython3.5下运行时需要的make生成文件。
2025/5/1 6:10:15 217KB Faster-RCNN Tensorflow
共 1000 条记录 首页 上一页 下一页 尾页