BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
AnyHand是编写一个视觉工具箱时的副产品,将其中的手势识别部分抽取出来做成了这个简单的手势识别库。
通过手势与计算机交互是计算机视觉交互的一个重要领域,这个库可以帮助具有一定编程能力,但没有计算机视觉背景的开发者快速地生成一个手势交互系统。
其中提供的API可以被用于图形用户界面应用程序。
只需要选取一个合适的手势模板,无需大量的模板训练就可就可以进行手势识别。
识别过程中将会实时返回您需要的手势名称、手势位置以及手势包围盒等信息,方便应用系统的调用。
在应用前请先仔细阅读系统的《安装与配置文档》、《应用文档》和《API描述文档》。
2025/4/30 18:41:40 2.69MB 手势 识别 计算机视觉
1
视觉跟踪技术作为计算机视觉领域的热门课题之一,是对连续的图像序列进行运动目标检测、提取特征、分类识别、跟踪滤波、行为识别,以获得目标准确的运动信息参数(如位置、速度等),并对其进行相应的处理分析,实现对目标的行为理解。
视觉跟踪是指对图像序列中的运动目标进行检测、提取、识别和跟踪,获得运动目标的运动参数,如位置、速度、加速度和运动轨迹等,从而进行下一步的处理与分析,实现对运动目标的行为理解,以完成更高一级的检测任务。
2025/4/6 0:40:14 8.68MB 视觉跟踪 avi监控视
1
opencv3计算机视觉python实现,电子版图书,入门必读。
2025/4/2 15:31:11 23.9MB CV OPENCV
1
DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
surf的原始论文。
对做图像匹配的朋友有一定帮助。
SURF意指加速的具有鲁棒性的特征,由Bay在2006年首次提出,这项技术可以应用于计算机视觉的物体识别以及3D重构中。
SURF算子由SIFT算子改进而来,一般来说,标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。
SURF最大的特征在于采用了harr特征以及积分图像integralimage的概念,这大大加快了程序的运行时间。
2025/3/18 15:50:41 4.34MB surf 算法
1
《计算机视觉——计算理论与算法基础》是马颂德、张正友编著的经典教材。
本资源为高清完整版,分享给大家一同学习!
2025/3/16 4:13:56 8.25MB 课本电子版 计算机视觉
1
基于内容的图像检索是计算机视觉的一个重要课题,它包括基于颜色、基于纹理、基于形状的图像检索,其中,今天我们讨论的是相对简单的基于颜色的图像检索。
我们知道,直方图是标识图像内容的一种有效方式,因此这里关键是要做到,仅仅比较它们的直方图就能测量出两个图像的相似度。
需要定义一个测量函数来评估两个直方图之间的差异程度或者相似
2025/3/15 8:47:38 18KB 图像检索
1
高压传输线的智能检测一直以来都是计算机视觉识别的热点。
本文打破传统的人工检测方式,利用无人机搭载开源硬件Arduino和相机模块采集高压传输线的数据,对采集回来的高压传输线图片用OpenCV和C++进行加载、灰度处理、二值化、边缘检测、直线检测、设计函数等系列处理,最终得到一幅只有传输线边界的直线检测图像,同时过滤掉复杂图背景,从而达到良好的识别效果。
2025/3/11 0:25:31 335KB 传输线检测
1
共 196 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡