DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
极限学习机(ExtremeLearningMachine,ELM)是一类基于前馈神经网络(feedforwardneuronnetwork)的机器学习算法,其主要特点是隐含层节点参数可以是随机或人为给定的且不需要调整,学习过程仅需计算输出权重。
ELM具有学习效率高和泛化能力强的优点,被广泛应用于分类、回归、聚类、特征学习等问题中。
2025/3/9 14:55:18 4.24MB ML 机器学习 人工智能 极限学习机
1
SVM支持向量机,预测分类回归,支持向量机(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
2024/11/26 14:13:05 415KB SVM 支持向量机
1
目前LS-SVMlab工具箱用户指南包含了大量MATALAB中LS-SVM算法的实现,其中涉及分类,回归,时间序列预测和无监督学习。
所有的功能都已经用Matlab从R2008a,R2008b,R2009a测试,工具箱中参考命令都以打印字体书写。
2024/9/29 1:32:49 511KB 中文 库文件 最小支持向量机
1
创建你的第一个贝叶斯网络手工创建一个模型从一个文件加载一个模型使用GUI创建一个模型推断处理边缘分布处理联合分布虚拟证据最或然率解释条件概率分布列表(多项式)节点Noisy-or节点其它(噪音)确定性节点Softmax(多项式分对数)节点神经网络节点根节点高斯节点广义线性模型节点分类/回归树节点其它连续分布CPD类型摘要模型举例高斯混合模型PCA、ICA等专家系统的混合专家系统的分等级混合QMR条件高斯模型其它混合模型参数学习从一个文件里加载数据从完整的数据中进行最大似然参数估计先验参数从完整的数据中(连续)更新贝叶斯参数数据缺失情况下的最大似然参数估计(EM算法)参数类型结构学习穷举搜索K2算法爬山算法MCMC主动学习结构上的EM算法肉眼观察学习好的图形结构基于约束的方法推断函数联合树消元法全局推断方法快速打分置信传播采样(蒙特卡洛法)推断函数摘要影响图/制定决策DBNs、HMMs、Kalman滤波器等等
2024/7/22 14:49:25 4.93MB 贝叶斯 Matlab工具包 算法 分类
1
一个非常好的数据挖掘工具WEKA的全名是怀卡托智能分析环境(WaikatoEnvironmentforKnowledgeAnalysis),它的源代码就是它的安装目录下weka-src.jar解压后得到。
有一本书《数据挖掘:实用机器学习技术》第2版是和weka配套的。
同时weka也是新西兰的一种鸟名,而weka的主要开发者来自新西兰。
weka作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看weka的接口文档。
在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情本文来自:人大经济论坛详细出处参考:http://www.pinggu.org/bbs/viewthread.php?tid=619834&page=1
2024/7/12 18:47:46 9.84MB 数据挖掘
1
通过在UCI开源网站上下载CarEvaluation数据集,对其使用机器学习算法进行分析,分别使用了分类算法,回归算法,聚类算法,文件中附数据集以及代码,代码使用jupyter运行即可,代码中介绍比较详细,通熟易懂,从头至尾皆可跑通!
2024/4/28 2:31:52 70KB UCI数据集 机器学习 分类 回归
1
本代码是相关向量机。
这份资源内包括相关向量机的整体实现,并包含两个例子和说明文档,
2024/2/10 15:28:49 102KB matlab rvm 分类 回归
1
基于vc++的SVM源代码,可以轻松实现自动分类(如文本自动分类)、回归分析等。
SVM(支持向量机)拥有完美的数学基础。
2024/1/19 16:11:05 304KB SVM 自动分类 回归分析 支持向量机
1
官方权威最小二乘支持向量机(LS-SVM)工具箱及用户手册v1.8手册包括分类、回归的示例代码
2023/8/20 0:14:35 2.07MB LS-SVM
1
共 12 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡