BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
ML程序设计教程第二版,中文版,从本网站下载,增加书签和扫描识别。
2025/4/24 4:47:06 53.98MB Standard ML 程序设计教程
1
OPENCVANN(类神经网路)手写数字辨识(opencv249_ann_digital_number)资料来源:https://blog.csdn.net/cherrywish/article/details/78761411https://blog.csdn.net/qq_15947787/article/details/51385861opencv249_ann_digital_number01-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10opencv249_ann_digital_number02-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10一亿次或10万分之一的误差为中止条件
2025/4/21 19:02:55 38.79MB 神经网路 OPENCV 手写 数字
1
本程序是对V-BLAST系统及其检测算法的仿真,可采用BPSK,QPSK,16QAM,64QAM调制。
检测算法为ML,MMSE,ZF,以及采用迫零的连续干扰消除检测算法。
2025/3/24 9:58:11 5KB matlab VBlast
1
MIMO检测,线性ZF,MMS,ML码性能比较-MIMODetectionMIMO检测技术,迫零(ZF),最小均方误差(MMSE)和最大似然(ML)
2025/1/27 12:33:51 6KB MIMO Detection
1
机器学习算法
2024/12/27 16:12:52 564KB 机器学习算法
1
比SICP简单,很好的入门书。
2024/12/22 13:50:58 35.07MB ML
1
实现svm对鸢尾花进行分类,3个不同品种的花每个50个数据进行分类,鸢尾花数据:archive.ics.uci.edu/ml/datasets/Ilis
2024/12/21 0:31:29 5KB python svm
1
ml.errml汇编,在Bin中,从MASM32中获取到的
2024/12/11 22:40:40 9KB ml.err ml 汇编
1
movielens的全部数据100klatest的20m的,ml-100k-README可以推荐
2024/11/3 18:06:22 189.5MB data
1
共 79 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡