经过Python编程,遍历文件夹中tif文件,批量进行掩膜处理。
经过Python编程,遍历文件夹中tif文件,批量进行掩膜处理。
2023/2/21 12:55:20 1KB python arcgis 掩膜
1
运用C言语,建立一个包含6个结点的无向图的邻接矩阵以及一个无向图,实现插入、删除边的功能,并进行深度优先遍历和广度优先遍历。
用图实现校园导游程序,编程求这两个位置间的最短路径。
1
包括:最小覆盖问题,最大边权最小生成树,字符串频率,字典问题,装箱问题,整数字典,旋转变换问题,图的2着色,同构二叉树,条形图,套汇问题,素数问题,双回路,石子合并,嵌套箱,前缀二叉树,离线最小值,进制方程,简单路径,赋权有向道路,非递归遍历,二叉树最短路径biminp,多机调度,等价类划分,wire小鼠迷宫,wait服务最优次序,waits多处服务最优次序,tape程序最优存储,switch电路板布线,subsize子树问题,stacks车皮编序,,repeat最长重复子串,rail车皮排序,railpk最优平行轨道车皮排序,railkk有限转轨栈车皮排序,post邮局选址,poly实系数一元式,pattern模式匹配,pipe油井选址,net集成电路等价类,paren括号匹配,maze小鼠迷宫,matchall所有匹配,jose陈列,inver逆序表,image图元识别,i2p,hanoi,glist广义表,gap间隙字符串匹配,expr波兰表达式,equiv等价类划分,cyc回文问题,count串计数,class向量分类,circle平面几何,cata高精度组合数,bilca_0最近公共祖先下载同时也支持下我的博客吧,关注最新的代码吧http://blog.csdn.net/msl1121
2023/2/19 23:03:06 7.52MB 算法 数据结构 源码
1
搜索可视化器我之所以建立这个项目,有几个原因:建立一个Web应用程序,巩固我对搜索算法的理解,对其进行可视化,并为其他人提供使用的工具。
输入您要搜索的值并观看运行中的算法。
现在,通过检查使用控制台来查看算法在搜索时经过哪些索引。
在下面,您可以了解我使用的算法的时间复杂性。
干杯!这些算法的时间复杂度搜索算法是在元素列表(数字,名称,任何字面意思)中搜索元素的算法。
对于此搜索可视化程序,应用程序从数字列表中搜索键值。
关于时间复杂度的另一件事:空间不影响时间复杂度。
例如,如果我有一个数组[6],则可以说时间复杂度为O(1)。
但是n=1,因而使用该逻辑,时间复杂度也是O(n)。
不要上当!线性搜寻时间复杂度最坏的情况:O(n)平均情况:O(n)最佳情况:O(1)线性搜索是最简单的搜索算法。
只需遍历数组并将每个元素与键值进行比较。
如果键值等于数组中的
2023/2/18 15:12:15 444KB JavaScript
1
次要功能:实现二叉树的生成与三种遍历过程。
实现语言为C语言,可供参考。
2023/2/17 22:56:38 3KB 二叉树 遍历
1
主要引见了PHP实现的简单组词算法,涉及php针对字符串的遍历、递归、组合、运算等相关操作技巧,需要的朋友可以参考下
2023/2/17 1:32:36 33KB PHP 组词算法
1
人工智能的作业,用深度优先遍历实现八数码成绩,可以设置搜索深度。
2023/2/10 5:34:40 1.51MB 八数码 DFS 人工智能
1
遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
访问结点所做的操作依赖于具体的应用问题。
遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。
2023/1/14 17:20:37 1KB 二叉树遍历
1
针对混沌系统的参数辨识是一个多维参数的优化问题,提出了基于混沌策略形态转移算法的混沌系统参数辨识方法。
该方法是在初始化时以混沌序列初始化种群,在搜索过程中引入混沌变异机制,利用遍历性对形态进行变异操作,避免了过早收敛,提高了全局搜索能力。
利用该算法辨识Lorenz混沌系统参数,并与基本形态转移算法和粒子群算法进行比较。
仿真结果表明,在有无噪声干扰的情况下,该算法比粒子群算法和基本形态转移算法具有更好的辨识精度,且比粒子群算法具有更好的收敛速度。
证明了该算法的有效性和抗干扰性,对混沌理论的发展有重要的意义。
1
经过MFC实现二叉树的前序中序后序的可视化遍历
2023/1/12 10:27:45 46.92MB mfc 二叉树 遍历
1
共 313 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡