Eagle7725摄像头(野火鹰眼7225摄像头代码启动).鹰眼摄像头设置摄像头输出数据大小是不能够实现的,就是说配置摄像头寄存器想要的大小并不能够实现摄像头数据输出自己想要的大小,这个或许是和二值化电路有关,具体不再深究2.摄像头数据是这样的格式:每个PLCK上升沿输出八个像素的数据,1表示该像素为黑色,0则为白色,所以用DMA来传输数据,最初要的分辨率是320X240,也就是40*8X240,每次处理一行数据,所以DMA的次数是40,也就说纯数据的数组的大小为40.
2021/10/1 17:49:58 15.87MB 鹰眼7225
1
花了几天时间,终于调通了stm32单片机3个串口dma方式通讯,分享个大家。
2015/3/7 3:34:51 1.67MB stm32 单片机 3个串口 dma
1
XilinxPCIE进行DMA仿真的testcase。
可以基于xapp1052进行DMA仿真。
使用阐明,可以参考我的博客:https://blog.csdn.net/qq_22168673/article/details/90760661
2015/11/18 8:21:44 1KB Xilinx PCIE DMA testcase
1
STM32F417串口运用DMA接收不定长数据例程
2017/7/27 1:12:23 744KB stm32 dma 串口
1
使用STM32F4系列单片机(本次使用的是STM32F429,此程序F4全系列使用,只需留意修改好主频就行了)加陶晶驰3.5寸T0系列串口屏,由触摸屏上的按键开启测量,然后显示信号峰峰值,频率,画出波形,判断波形。
对频率变化的信号测量频率后确定时钟触发频率,即确定了采样率,用ADC双通道测量两路信号,用DMA传输至一个数组内存中,然后显示波形、计算Vpp、并对数据进行FFT,分析频谱确定波形名称(可判断正弦波,三角波,方波,脉冲波(有误差),锯齿波,等幅DTMF)
2022/10/20 12:49:20 20.46MB STM32F4
1
STM32F103单片机上实现,串口2经过DMA接收数据,串口1将串口2接收到的数据经过DMA发送出去。
2018/2/5 14:08:13 595KB STM32 103 接收 DMA
1
STM32定时器1实现两组PWM互补输入,DMA方式实现占空比可调,并带有死区。
2021/1/14 10:57:01 4.13MB STM32 TIM1 SPWM
1
引见了DMA和cache的关系和内在原理,内核中流式DMA结构的引见和使用
2018/6/19 20:45:20 346KB DMA Cache一致性 流式DMA
1
这本书很好,适合于初学者。
里面精讲了很多的案例,非常的有用。
目录雷蒙序简介Linux文档工程小组“公告”译者序第一部分Linux内核前言第1章硬件基础与软件基础61.1硬件基础61.1.1CPU71.1.2存储器81.1.3总线81.1.4控制器和外设81.1.5地址空间91.1.6时钟91.2软件基础91.2.1计算机语言91.2.2什么是操作系统111.2.3内核数据结构13第2章内存管理152.1虚拟内存抽象模型152.1.1请求调页172.1.2交换172.1.3共享虚拟内存182.1.4物理寻址模式和虚拟寻址模式182.1.5访问控制182.2高速缓存192.3Linux页表202.4页分配和回收212.4.1页分配222.4.2页回收222.5内存映射222.6请求调页232.7Linux页缓存242.8页换出和淘汰252.8.1减少缓冲区和页缓存大小252.8.2换出SystemV共享内存页262.8.3换出和淘汰页272.9交换缓存272.10页换入28第3章进程293.1Linux进程293.2标识符313.3调度323.4文件343.5虚拟内存353.6创建进程363.7时间和定时器373.8执行程序383.8.1ELF393.8.2脚本文件40第4章进程间通信机制414.1信号机制414.2管道424.3套接字444.3.1SystemV的进程间通信机制444.3.2消息队列444.3.3信号量454.3.4共享存储区47第5章PCI495.1PCI的地址空间495.2PCI配置头505.3PCI的I/O和存储地址空间515.4PCI-ISA桥515.5PCI-PCI桥515.5.1PCI-PCI桥:PCII/O和存储地址空间的窗口515.5.2PCI-PCI桥:PCI配置周期和PCI总线编号525.6LinuxPCI初始化535.6.1Linux内核PCI数据结构535.6.2PCI设备驱动程序535.6.3PCI的BIOS函数565.6.4PCI修正过程57第6章中断处理与设备驱动程序606.1中断与中断处理606.1.1可编程中断控制器616.1.2初始化中断处理数据结构616.1.3中断处理626.2设备驱动程序636.2.1测试与中断646.2.2直接存储器访问(DMA)656.2.3存储器666.2.4设备驱动程序与内核的接口666.2.5硬盘696.2.6网络设备74第7章文件系统777.1第二个扩展文件系统EXT2787.1.1EXT2系统的inode节点797.1.2EXT2系统的超级块807.1.3EXT2系统的组描述符807.1.4EXT2系统的目录817.1.5在EXT2文件系统中查找文件817.1.6在EXT2文件系统中改变文件的大小827.2虚拟文件系统837.2.1VFS文件系统的超级块847.2.2VFS文件系统的inode节点847.2.3注册文件系统857.2.4装配文件系统857.2.5在虚拟文件系统中查找文件877.2.6卸载文件系统877.2.7VFS文件系统的inode缓存877.2.8目录缓存887.3缓冲区缓存887.3.1bdflush内核守护进程907.3.2update进程907.4/proc文件系统917.5特殊设备文件91第8章网络928.1TCP/IP网络概述928.2Linux中的TCP/IP网络层次结构958.3BSD套
2018/9/3 9:31:32 18.23MB 书籍
1
利用stm32f407的DCMI+DMA+SRAM驱动OV2640提取RGB565图像,提高效率,在误点原子探索者开发板程序深入修改,加上了简单的转灰度计算。
2015/1/23 6:03:51 549KB stm32 OV2640 DCMI
1
共 173 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡