简介:
《键盘程序设计》在单片机编程中,键盘程序设计是至关重要的,因为它涉及到用户与设备之间的交互。
本文将详细讲解键盘程序设计中的几个关键知识点。
我们需要理解按键编码的概念。
每个按键在单片机程序中都有一个对应的键值,这个键值是独一无二的。
当按键被按下,键盘会通过I/O线向单片机发送该键值,从而让单片机根据不同的键值执行相应的操作。
在硬件层面上,按键通常通过单片机的I/O引脚与CPU进行通信,这些引脚接收高电平或低电平信号,这些高低电平的组合就构成了按键的编码。
设计键盘编码时,我们需要合理选择键盘结构,并为每个按键分配不同的I/O输入信号以便识别和响应。
确保输入的可靠性至关重要。
由于机械按键的特性,按键在闭合和断开时会产生抖动,可能导致误操作或重复响应。
为了消除这种抖动,通常在程序中进行去抖动处理。
这通常涉及在按键被按下后设置一个短暂的延迟(如5ms至10ms),以等待抖动结束。
此外,为了防止短时间内多次响应同一按键,还需要进行一次按键处理,即在按键按下后的特定时间内,只响应一次按键事件。
接下来,我们讨论单片机如何检测和响应键盘输入。
有两种主要的方法:查询和中断。
查询方式不断地检查每个按键的状态,适合于对实时性要求不高的简单系统。
而中断法则在按键按下时触发中断,减少了CPU的占用,适用于实时性要求高的复杂系统。
在程序设计中,我们需要检查按键是否被按下,然后执行去抖动程序,扫描按键以确定键值,并执行相应的处理子程序。
独立式按键是键盘设计的一种常见方式,适用于按键数量较少且单片机资源充足的系统。
每个独立式按键独占一个I/O口,根据端口电平变化来判断按键状态。
编程时,可以用查询方式,无论是汇编语言还是C51语言,都可以轻松实现。
对于按键数量较多的情况,通常采用矩阵式键盘,如4×4矩阵键盘。
这种键盘由4行4列的线交叉构成,16个按键位于交叉点。
通过扫描行线和列线,可以确定按键的状态,有效地利用了单片机的I/O端口。
扫描法是常见的矩阵键盘处理方式,它通过不断扫描并根据端口输入调用按键处理子程序。
线反转法则是一种更高效的方法,无论按键位置在哪一列,都能快速定位。
中断法同样适用于矩阵式键盘,提高响应速度的同时减轻了CPU的负担。
键盘程序设计涉及编码、可靠性、检测和响应策略等多个方面,理解和掌握这些知识点对于构建有效的人机交互系统至关重要。
在实际应用中,应根据系统需求和资源选择合适的键盘结构和处理方法。
2025/6/15 20:03:33 312KB
1
【DM365_NAND启动模式解析】DM365是一款由TexasInstruments(TI)生产的数字媒体处理器,常用于视频处理和嵌入式系统。
在DM365中,NAND闪存是一种常见的非易失性存储器,用于存储固件和操作系统。
NAND启动模式是指DM365在上电或复位后从NAND闪存中加载启动代码的过程。
此过程涉及一系列复杂的步骤,确保系统能够正确地从NAND中读取和执行固件。
**NAND启动流程**1.**初始化**:系统首先初始化RAM1的高2KB栈空间(0x7800-0x7fff),避免覆盖用于存储UBL块号的最后32个字节(0x7ffc-0x8000)。
2.**禁止中断**:所有中断(IRQ和FIQ)被禁用,以确保启动过程不被打断。
3.**设置DEEPSLEEPZ/GIO0**:这个外部引脚在NAND启动时必须处于高电平。
4.**读取NANDID**:读取NAND闪存的设备ID,获取设备特性,如页面大小、块大小等。
5.**初始化NAND区域**:根据NAND的参数设置控制器和寄存器。
6.**搜索UBL描述符**:RBL(ROMBootloader)在block1的page0开始搜索UBL(UserBootLoader)的描述符。
如果未找到正确的UBL,会依次检查接下来的24个块,以防遇到坏块。
7.**处理UBL描述符**:UBL描述符包含入口点地址、占用的NAND页数、起始块和起始页等信息,用于指导UBL的加载和执行。
8.**ECC错误检测和校正**:开启硬件ECC(ErrorCorrectionCode)检测,复制UBL到IRAM(InternalRAM)。
如果检测到4位ECC错误,通过ECC算法进行纠正。
如果多次失败,RBL会尝试下一个块,直到找到有效的UBL描述符,或者在搜索完24个块后转而从SD卡启动。
9.**启动UBL**:在UBL的入口点执行代码,将控制权交给UBL。
10.**安全启动模式**:根据配置,启动模式可能包括PLL旁通模式,不使用快速EMIF、DMA或I-Cache。
在其他模式下,这些功能可以被启用以提高性能。
**NANDUBLdescriptor格式**UBL描述符是一个包含关键信息的数据结构,用于指示如何加载和执行UBL。
它可能包含如下字段:-入口点地址:UBL执行的起点。
-UBL占用的NAND页数:指示UBL的大小,必须是连续的页。
-UBL的起始块和起始页:定义UBL在NAND中的位置。
-MAGICIDs:特定的标识符,用于识别不同的启动模式。
**NAND启动详细流程**1.初始化栈空间、禁止中断、设置DEEPSLEEPZ/GIO0。
2.读取NAND设备ID,初始化NAND控制器。
3.搜索UBL描述符,最多遍历24个块。
4.复制并校验UBL到IRAM,根据UBL描述符配置启动选项。
5.转交控制权给UBL执行。
NAND启动流程图和具体的ARMNANDROMBootloader实例进一步详细说明了这个过程。
此外,支持的NAND设备ID列表确保了对多种NAND闪存设备的兼容性。
DM365的NAND启动模式解析涉及了设备识别、错误检测、固件加载和执行等多个环节,确保了系统的稳定和可靠启动。
理解这一过程对于开发和调试基于DM365的嵌入式系统至关重要。
2025/5/20 16:04:21 249KB DM365
1
/**************************************************************************************************///功能简介:使用Verilog编写的一个脉冲信号延时模块,延时时长可设定(小于输入脉冲周期),可精确到一个时钟周期//代码有详细注解,设计项目验证可用,原项目是对一个周期为2ms,高电平脉宽为5us的脉冲信号延时100us输出/**************************************************************************************************/
2025/5/8 12:18:23 1KB 脉冲信号延时 Verilog
1
AXI4主机从机源码对应分析:1.首先主机会在状态机的控制下在四个状态中跳转,分别时IDLE、INIT_WRITE、INIT_READ、INIT_COMPARE,一开始处于IDLE状态,在init_txn_pulse信号的控制下可跳转到INIT_WRITE状态。
在INIT_WRITE状态,init_txn_pulse信号只控制了第一次产生start_single_burst_write信号高电平,而后面start_single_burst_write信号高电平的产生主要依靠burst_write_active信号控制
2025/3/25 10:37:13 1.7MB verilo axi4
1
将高电平和低电平交替变换的引脚接到P3.2即外部中断0,在串口1输出高电平时间和低电平时间,实时检测实时输出.数据通过串口回传至电脑,经数据处理和分析,可实现模拟示波器功能。
2025/3/11 17:17:40 37KB 高低电平检测
1
本实验设计一个十字路口的交通灯控制器,分为东西和南北两个部分。
每个部分有五盏灯,分别为左转灯、直行灯、右转灯、人行道灯及黄灯,另外还有一个倒计时器。
左转灯、直行灯、右转灯、人行道灯亮表示允许通行,灯灭表示禁止通行;
黄灯亮表示即将有信号灯的状态发生改变;
倒计时显示了到下一状态的时间。
2.状态表(0表示灯灭,1表示灯亮)时间度量 东西方向  南北方向 东西方向 南北方向t/s ← ↑ → 行人 黄 ← ↑ → 行人 黄 倒计时/s 倒计时/s0~13 0 1 1 0 0 0 0 0 0 0 13 4513~15 0 1 1 0 1 0 0 0 0 0 2  15~28 0 1 0 1 0 0 0 0 0 0 13  28~30 0 1 0 1 1 0 0 0 0 0 2  30~43 1 0 0 0 0 0 0 0 0 0 13  43~45 1 0 0 0 1 0 0 0 0 0 2  45~58 0 0 0 0 0 0 1 1 0 0 45 1358~60 0 0 0 0 0 0 1 1 0 1   260~73 0 0 0 0 0 0 1 0 1 0   1373~75 0 0 0 0 0 0 1 0 1 1   275~88 0 0 0 0 0 1 0 0 0 0   1388~90 0 0 0 0 0 1 0 0 0 1   23.状态图(低电平表示灯灭,高电平表示灯亮)4.顶层设计图如图所示,交通灯控制器主要分为三个模块,交通灯状态控制,交通灯显示和倒计时。
交通灯状态控制模块:接受频率为1Hz的时钟信号,根据该信号进行处理,对交通灯显示和倒计时模块给出相应的状态编号(12个状态)。
交通灯显示模块:通过相应的状态设置两组交通灯的亮灭。
倒计时模块:通过相应的状态确定倒计时的基数及显示。
2025/1/13 11:13:48 546KB FPGA 交通灯 设计
1
设计方案基于单片机的自动投食器设计,通过模块化的设计,利用STC89C52单片机连接控制各模块,逐个完成其基本功能需求,有以下6个模块:1、单片机控制模块:采用STC89C52作为核心元件协调控制各模块工作;
2、按键模块:采用7个触键开关,六个设置按键和一个复位按键;
3、电机控制阀门:采用步进电机和步进电机驱动模块实现门控装置;
4、蜂鸣器模块:采用一个三极管和一个蜂鸣器,由蜂鸣器发出响声吸引宠物过来进食。
当发光二极管亮灯时,蜂鸣器接收到一个高电平,蜂鸣器发出响声吸引宠物过来进食;
5、显示模块:采用LCD1602液晶显示屏显示设定时间,通过按键来设定时间,按照年/月/日/时/
2025/1/13 8:48:11 385KB 单片机 项目设计 protues keil
1
超外差式收音机,Multisim仿真电路,包括包络检波电路、电容反馈振荡器电路、高电平调制电路、高频功放电路、高频小信号放大电路、调谐回路、调制及混频电路、中频放大电路
2024/11/2 6:16:33 14.78MB 超外差式收音机 Multisim仿真电路
1
本模块实现高低电平噪声滤波功能,即将高电平和低电平持续时间低于阈值的脉冲都滤除。
程序首先滤除高电平噪声,而后滤除低电平噪声。
输出脉冲与输入脉冲间有两个阈值长短的时间延迟。
程序中时钟为1MHz,阈值FilterThreshold为100us,可根据实际情况进行设置。
程序中高低电平的阈值取的一样,可分别设置。
敬请注意,由于时延影响,若FilterThreshold为100,则低于101的都被滤除,大于等于102的才能通过。
2024/10/8 17:27:38 277KB Verilog 滤波 脉宽鉴别
1
LED一般是恒流点亮的,如何改变LED的亮度呢?答案就是PWM控制。
在一定的频率的方波中,调整高电平和低电平的占空比,即可实现。
比如我们用低电平点亮一个LED灯,我们假设把一个频率周期分为10个时间等份,如果方波中的高低电平占空比是9:1,这是就是一个比较暗的亮度,如果方波中高低电平占空比是10:0,这时,全部是高电平,灯是灭的。
如果占空比是5:5,就是一个中间亮度,如果高低比是1:9,是一个比较亮的亮度,如果高低是0:10,这时全部是低电平,就是最亮的。
2024/5/12 4:36:28 22KB LED
1
共 32 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡