Echarts高级进阶教程(1):异步加载大量数据导致dataZoom组件拖动缩放时间轴卡顿的sampling降采样策略解决方案
2024/8/4 5:14:38 468KB echarts sampling
1
Multinomialre-sampling多项式重采样,Residualre-sampling残差重采样,Stratifiedre-sampling分层重采样,Systematicre-sampling系统重采样,regularizedre-sampling正则重采样算法
2024/4/20 17:42:34 2.04MB UPF重采样算法
1
奥本海姆(AlanV.Oppenheim)教授是美国麻省理工学院电子学研究实验室(ELE)的首席研究员,其研究领域包括在一般领域的信号处理及应用。
奥本海默教授是美国国家工程院院士(NationalAcademyofEngineering)和IEEE会士,也是EtaKappaNu和SigmaXi的联谊会会员。
同时他还是古根海姆(Guggenheim)学者和以色列特拉维夫大学赛克勒尔(Sackler)学者。
奥本海姆教授因其出色的科研和教学工作多次获奖,其中包括IEEE教育勋章、IEEE百年杰出贡献奖、IEEE在声学、语音和信号处理领域的社会与科学成就奖和资深成就奖。
2007年他还获得了IEEEJackS.Kilby信号处理奖章。
目录第1章信号与系统SignalsandSystems第2章线性时不变系统LinearTime—InvariantSystems第3章周期信号的傅里叶级数表示FourierSeriesRepresentationofPeriodicSignals第4章连续时间傅里叶变换TheContinuous—TimeFourierTransform第5章离散时间傅里叶变换TheDiscreteTimeFourierTransf01Tll第6章信号与系统的时域和频域特性Time—andFrequeneyCharacterizationofSignalsandSystems第7章抽样Sampling第8章通信系统CommunicationSystems第9章拉普拉斯变换TheLaplaceTransform第10章Z变换TheZTransf01TII第11章线性反馈系统LinearFeedbackSystems附录部分分式展开Partial-FractionExpansion参考文献Bibliography习题答案Answers索引Inde
2024/3/30 6:27:02 12.41MB 信号与系统
1
Thistextbookintroducessparseandredundantrepresentationswithafocusonapplicationsinsignalandimageprocessing.Thetheoreticalandnumericalfoundationsaretackledbeforetheapplicationsarediscussed.Mathematicalmodelingforsignalsourcesisdiscussedalongwithhowtousethepropermodelfortaskssuchasdenoising,restoration,separation,interpolationandextrapolation,compression,sampling,analysisandsynthesis,detection,recognition,andmore.Thepresentationiselegantandengaging.SparseandRedundantRepresentationsisintendedforgraduatestudentsinappliedmathematicsandelectricalengineering,aswellasappliedmathematicians,engineers,andresearcherswhoareactiveinthefieldsofsignalandimageprocessing.*Introducestheoreticalandnumericalfoundationsbeforetacklingapplications*Discusseshowtousethepropermodelforvarioussituations*Introducessparseandredundantrepresentations*FocusesonapplicationsinsignalandimageprocessingThefieldofsparseandredundantrepresentationmodelinghasgonethroughamajorrevolutioninthepasttwodecades.Thisstartedwithaseriesofalgorithmsforapproximatingthesparsestsolutionsoflinearsystemsofequations,latertobefollowedbysurprisingtheoreticalresultsthatguaranteethesealgorithms’performance.Withthesecontributionsinplace,majorbarriersinmakingthismodelpracticalandapplicablewereremoved,andsparsityandredundancybecamecentral,leadingtostate-of-the-artresultsinvariousdisciplines.Oneofthemainbeneficiariesofthisprogressisthefieldofimageprocessing,wherethismodelhasbeenshowntoleadtounprecedentedperformanceinvariousapplications.Thisbookprovidesacomprehensiveviewofthetopicofsparseandredundantrepresentationmodeling,anditsuseinsignalandimageprocessing.Itoffersasystematicandorderedexposuretothetheoreticalfoundationsofthisdatamodel,thenumericalaspec
2023/11/21 11:19:34 14.08MB Sparse Representation
1
Thesecondeditionofthiswell-knownandhighlyregardedtextcanbeusedasthebasisforaone-ortwo-semesterundergraduatecourseinsignalsandlinearsystemstheoryandapplications.Topicsincludebasicsignalsandsystemsconcepts,lineartime-invariant(LTI)systems,Fourierrepresentationsofcontinuous-timeanddiscrete-timesignals,theCTandDTFouriertransforms,andtime-andfrequency-domainanalysismethods.Theauthoremphasizesapplicationsofthetheorythroughnumerousexamplesinfiltering,sampling,communications,andfeedback.Theparalleldevelopmentofcontinuous-timeanddiscrete-timefrequencydomainmethodsallowsthereadertoapplyinsightsandintuitionacrossthetwodomains.Italsofacilitatesadeeperunderstandingofthematerialbybringingintofocusthesimilaritiesanddifferencesbetweenthetwodomains.Thetextalsoincludesintroductorychaptersoncommunicationsystemsandcontroltheory.Thisbookassumesthatyouhaveabackgroundincalculusaswellasexposuretocomplexnumbersandelementarydifferentialequations.Becauseofitsthoroughnessandunhurriedpace,thistextishighlyrecommendedforstudentsandthoseinterestedinself-study.
2023/10/15 4:29:17 14.24MB Ebook
1
Kullback-Leibler距离.KLD-Sampling粒子滤波算法.该算法在保障未必滤波精度的前提下,能够实用地削减滤波进程中使用的粒子数,从而减小滤波功夫,普及滤波功能.
2023/3/31 19:01:19 9KB kld_sampling matlab
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡