这个Matlab工具箱实现32种维数降低技术。
这些技术都可以通过COMPUTE_MAPPING函数或trhoughGUI。
有以下技术可用: -主成分分析('PCA') -线性判别分析('LDA') -多维缩放('MDS') -概率PCA('ProbPCA') -因素分析('因子分析') -Sammon映射('Sammon') -Isomap('Isomap') -LandmarkIsomap('LandmarkIsomap') -局部线性嵌入('LLE') -拉普拉斯特征图('Laplacian') -HessianLLE('HessianLLE') -局部切线空间对准('LTSA') -扩散图('DiffusionMaps') -内核PCA('KernelPCA') -广义判别分析('KernelLDA') -随机邻居嵌入('SNE') -对称随机邻接嵌入('SymSNE') -t分布随机邻居嵌入('tSNE') -邻域保留嵌入('NPE') -线性保持投影('LPP') -随机接近嵌入('SPE') -线性局部切线空间对准('LLTSA') -保形本征映射('CCA',实现为LLE的扩展) -最大方差展开('MVU',实现为LLE的扩展) -地标最大差异展开('地标MVU') -快速最大差异展开('FastMVU') -本地线性协调('LLC') -歧管图表('ManifoldChart') -协调因子分析('CFA') -高斯过程潜变量模型('GPLVM') -使用堆栈RBM预训练的自动编码器('AutoEncoderRBM') -使用进化优化的自动编码器('AutoEncoderEA')此外,工具箱包含6种内在维度估计技术。
这些技术可通过INTRINSIC_DIM函数获得。
有以下技术可用: -基于特征值的估计('EigValue') -最大似然估计器('MLE') -基于相关维度的估计器('CorrDim') -基于最近邻域评估的估计器('NearNb') -基于包装数量('PackingNumbers')的估算器 -基于测地最小生成树('GMST')的估计器除了这些技术,工具箱包含用于预白化数据(函数PREWHITEN),精确和估计样本外扩展(函数OUT_OF_SAMPLE和OUT_OF_SAMPLE_EST)的函数以及生成玩具数据集(函数GENERATE_DATA)的函数。
工具箱的图形用户界面可通过DRGUI功能访问
2024/9/5 12:27:19 1.06MB matlab,降维
1
本matlab工具箱包含目前大多数的降维技术,包括PCA,LDA,MDS,ProbPCA,Isomap,LLE,Laplacian,KernelPCA,KernelLDA,CCA,MCML,LPP。
2024/8/13 4:15:45 2.13MB 降维 matlab PCA LDA
1
1.1要提高图像处理水平,需要从哪些方面努力?2.1编程实现:分别用最近邻插值、双线性插值和双三次插值等方法把一幅图像面积放大9倍,并对放大效果进行比较。
2.2提出将像素宽度的m通路转换为4通路的一种算法(习题2.13),并编程实现。
3.1编程实现图像反转、对数变换和对比度拉伸。
3.2试提出一种如3.3.4节中讨论的基于直方图统计的局部增强方法,并编程实现。
3.3编程实现中值滤波、Soble运算和Laplacian锐化。
3.4对掌纹图像进行图像增强,使得掌纹纹线更清晰。
说明增强方案,并编程实现。
4.1编程实现等效于3*3邻域均值平滑的频率域滤波。
4.2编程实现同态滤波以及巴特沃思低通、高通、带通、带阻滤波器。
4.3习题4.43。
5.1编程实现可变阈值处理。
5.2编程实现Ostu图像分割方法。
5.3设计人脸方案,并编程实现。
5.4设计与实现虹膜图像分割。
6.1编程实现边界追踪算法。
6.2编程实现二值区域细化算法。
6.3编程实现灰度共生矩阵方法。
6.4习题11.16。
6.5习题11.27。
7.1编程实现印刷体数字识别(包括增强、分割、特征提取和识别)。
7.2编程实现桃子图像识别,要求能使识别蟠桃、水蜜桃、油桃、黄桃等亚种。
(包括增强、分割、特征提取和识别)
2024/4/11 4:39:24 10.24MB VC++
1
压缩包中包含的具体内容:对给定数据中的6个不同场景图像,进行全景图拼接操作,具体要求如下:(1) 寻找关键点,获取关键点的位置和尺度信息(DoG检测子已由KeypointDetect文件夹中的detect_features_DoG.m文件实现;
请参照该算子,自行编写程序实现Harris-Laplacian检测子)。
(2) 在每一幅图像中,对每个关键点提取待拼接图像的SIFT描述子(编辑SIFTDescriptor.m文件实现该操作,运行EvaluateSIFTDescriptor.m文件检查实现结果)。
(3) 比较来自两幅不同图像的SIFT描述子,寻找匹配关键点(编辑SIFTSimpleMatcher.m文件计算两幅图像SIFT描述子间的Euclidean距离,实现该操作,运行EvaluateSIFTMatcher.m文件检查实现结果)。
(4) 基于图像中的匹配关键点,对两幅图像进行配准。
请分别采用最小二乘方法(编辑ComputeAffineMatrix.m文件实现该操作,运行EvaluateAffineMatrix.m文件检查实现结果)和RANSAC方法估计两幅图像间的变换矩阵(编辑RANSACFit.m文件中的ComputeError()函数实现该操作,运行TransformationTester.m文件检查实现结果)。
(5) 基于变换矩阵,对其中一幅图像进行变换处理,将其与另一幅图像进行拼接。
(6) 对同一场景的多幅图像进行上述操作,实现场景的全景图拼接(编辑MultipleStitch.m文件中的makeTransformToReferenceFrame函数实现该操作)。
可以运行StitchTester.m查看拼接结果。
(7) 请比较DoG检测子和Harris-Laplacian检测子的实验结果。
图像拼接的效果对实验数据中的几个场景效果不同,请分析原因。
已经实现这些功能,并且编译运行均不报错!
2024/3/17 0:39:05 19.5MB MATLAB 国科大 图像拼接 图像处理
1
开拓情景为QT5.8+opencv3.2,首要实现为了边缘检测,外表提取及外表跟踪,边缘检测使用了Canny算子、Sobel算子、Laplacian算子,外表跟踪使用八邻域法。
2023/3/31 16:36:58 178KB 边缘检测 轮廓提取 轮廓跟踪
1
计算机图形学课程设计实验,OpenGL+VS对obj文件实现三维网格光顺操作(用拉普拉斯算法),使用OpenGL类库对三维模型进行绘制,添加采用鼠标交互方式对三维模型进行旋转、放缩、平移等操作;
包含完整的代码和我的实验报告
2023/2/17 9:21:09 185KB opengl vs
1
LoG卷积一幅图像与首先使用高斯型平滑函数卷积改图像,然后计算所得结果的拉普拉斯是一样的。
所以在LoG公式中使用高斯函数的目的就是对图像进行平滑处理,使用Laplacian算子的目的是提供一幅用零交叉确定边缘位置的图像;
图像的平滑处理减少了噪声的影响并且它的主要作用还是抵消由Laplacian算子的二阶导数引起的逐步增加的噪声影响。
2023/2/4 7:46:21 281B Log算子 matlab
1
支持向量数据描述(SupportVectorDataDescription,SVDD)语言:MATLAB版本:V2.1-----------------------------------------------------创作不易,欢迎各位5星好评~~~如有疑问或建议,请发邮件至:iqiukp@outlook.com可提供关于该算法/代码的付费咨询和有偿编写-----------------------------------------------------主要特点1.支持单值分类和二值分类的超球体构建2.支持多种核函数(linear,gaussian,polynomial,sigmoid,laplacian)3.支持2D或3D数据的决策边界可视化4.支持基于贝叶斯超参数优化、遗传算法和粒子群算法的SVDD的参数优化5.支持加权的SVDD-----------------------------------------------------注意1.SVDDV2.1仅支持R2016b以上的MATLAB版本2.正样本和负样本对应的标签分别为1和-13.提供了多个示例文件,每个文件的开头都有对应的引见4.此代码仅供参考5.可以阅读“SVDD-V2.1使用说明.pdf”文件了解更多用法
1
程序中包含了多种流形学习算法:LLE、Isomap、Laplacian、HLLE等及实验所用的非线性数据,如Swiss-Roll等;
同时程序还为用户提供了界面,可以设置各种参数。
程序中也包含了多种经典的模式辨认算法,如MDS、PCA。
2022/9/4 0:28:02 66KB manifold LLE Isomap Laplacian
1
共附带了5个m文件,其中pyr_reduce.m和pyr_expand.m分别实现了一次滤波+降采样和滤波+升采样操作;
genPyr.m调用这两者,实现高斯和拉普拉斯金字塔的生成;
pyrReconstruct.m则实现了由金字塔进行图像重构的操作。
最初,pyrBlend.m进行了图像融合的实验。
还有三张试验图片
2022/9/3 13:08:49 36KB pyramid matlab blend 高斯
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡