选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。
然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。
算法总体效果可以,误检较少。
2025/3/28 6:38:04 3KB 行为检测
1
《多智能体系统的协同群集运动控制》以多智能体系统协同群集运动控制为主线,首先介绍了图论和控制器设计所用到的基础理论知识;
其次,分别从拓扑结构的边保持和代数连通度两个角度介绍了连通性保持条件下的协同群集运动控制协议设计方法;
进而,针对典型的轮式移动机器人非完整约束模型介绍了连通性保持条件下的协同控制策略,为简化系统复杂拓扑结构,还介绍了基于骨干网络提取的协同群集运动控制策略;
书中将个体动态模型提升到高阶非线性系统模型,介绍了高阶非线性系统协同控制协议设计方法;
最后,针对多智能体系统非合作行为检测与隔离进行了详细介绍,并提出了相关算法。
2023/12/22 10:08:09 40.58MB 多智能体 运动控制 协同
1
基于matlab的人体行为检测与跟踪算法,外面含有演示视频及算法阐发文件。
2023/4/8 17:02:48 659KB 跟踪 matlab
1
针对近年流行的盗号扫号、灌水、恶意注册等业务安全要挟,本文提出基于用户行为的一些异常检测方法
2023/2/4 18:58:50 1.38MB 业务系统异常行为检测
1
对公共场所中人群监控准确性和实时性低的问题,提出一种基于运动显著图的人群异常行为检测方法。
该方法首先利用Lucas-Kanade法计算稀疏特征点的光流场,并对光流场进行时间和空间上的滤波处理,然后计算特征点的运动方向、速度和加速度。
为了准确描述人群行为,将人群的速度幅值、运动方向变化量和加速度幅值分别映射为图像的R、G、B三个通道,并以此合成代表人群运动特征的运动显著图。
最后,设计和训练面向人群运动显著图的卷积神经网络模型,并利用该模型检测人群中能否存在异常行为。
2021/4/7 19:49:27 477KB 算法
1
根据物体挪动的速度和大小检测物体的异常行为opencv
2017/9/10 11:42:54 5.3MB opencv
1
这是在视频录像中,检测人的运动的状况,分析是不是符合人的正常行为
2021/10/15 5:14:36 6.26MB 运动检测,方向检测,异常分析
1
针对用电过程中的盗电窃电问题,基于数据挖掘的思想提出了一种自动检测窃电行为的方法。
通过分析用户用电数据的特点,在循环神经网络(RNN)算法的基础上引入长短期记忆单元(LSTM),通过输入门、输出门与遗忘门等函数选择性地保留记忆单元的输入输出信息,改善算法训练时的梯度消失现象。
将RNN网路改进为并行化网络,将长时间序列的输入特征向量进行片段化处理,克服RNN网络在处理长序列时的信息丢失缺点。
使用国家电网的公开数据集进行仿真实验。
结果表明,在相同的时间复杂度下,相较于传统RNN网络,改进算法对窃电行为的识别精度提升到了92.85%,模型的交叉熵损失下降为0.253,AUC增长至0.871,算法的综合功能显著提升。
2021/9/2 6:54:54 1.41MB RNN 数据挖掘 防窃电 智能电网
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡