BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
三种循环神经网络的介绍与比较,帮助大家对循环神经网络的理解
2025/4/22 20:01:04 2.89MB 循环神经网络
1
马尔科夫链matlab程序包。
马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态。
举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
当然这么说可能有些武断,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等,当然MCMC也需要它。
    如果用精确的数学定义来描述,则假设我们的序列状态是...Xt−2,Xt−1,Xt,Xt+1,......Xt−2,Xt−1,Xt,Xt+1,...,那么我们的在时刻Xt+1Xt+1的状态的条件概率仅仅依赖于时刻XtXt,即:P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)    既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。
我们来看看下图这个马尔科夫链模型的具体的例子。
2025/4/8 19:03:14 15KB 马尔科夫链
1
本例使用tensorflow框架实现深度学习模型,包括CNN、RNN、GAN等,有源码和数据
2025/3/2 13:51:26 37.91MB CNN RNN GAN 深度学习
1
PythonDeepLearningProjects:9projectsdemystifyingneuralnetworkanddeeplearningmodelsforbuildingintelligentsystemsBy作者:MatthewLamons–RahulKumar–AbhishekNagarajaISBN-10书号:1788997093ISBN-13书号:9781788997096出版日期:2018-10-31pages页数:(670)Deeplearninghasbeengraduallyrevolutionizingeveryfieldofartificialintelligence,makingapplicationdevelopmenteasier.PythonDeepLearningProjectsimpartsalltheknowledgeneededtoimplementcomplexdeeplearningprojectsinthefieldofcomputationallinguisticsandcomputervision.Eachoftheseprojectsisunique,helpingyouprogressivelymasterthesubject.You’lllearnhowtoimplementatextclassifiersystemusingarecurrentneuralnetwork(RNN)modelandoptimizeittounderstandtheshortcomingsyoumightexperiencewhileimplementingasimpledeeplearningsystem.Similarly,you’lldiscoverhowtodevelopvariousprojects,includingwordvectorrepresentation,opendomainquestionanswering,andbuildingchatbotsusingseq-to-seqmodelsandlanguagemodeling.Inadditiontothis,you’llcoveradvancedconcepts,suchasregularization,gradientclipping,gradientnormalization,andbidirectionalRNNs,throughaseriesofengagingprojects.Bytheendofthisbook,youwillhavegainedknowledgetodevelopyourowndeeplearningsystemsinastraightforwardwayandinanefficientwayContents1:BUILDINGDEEPLEARNINGENVIRONMENTS2:TRAININGNNFORPREDICTIONUSINGREGRESSION3:WORDREPRESENTATIONUSINGWORD2VEC4:BUILDINGANNLPPIPELINEFORBUILDINGCHATBOTS5:SEQUENCE-TO-SEQUENCEMODELSFORBUILDINGCHATBOTS6:GENERATIVELANGUAGEMODELFORCONTENTCREATION7:BUILDINGSPEECHRECOGNITIONWITHDEEPSPEECH28:HANDWRITTENDIGITSCLASSIFICATIONUSINGCONVNETS9:OBJECTDETECTIONUSINGOPENCVANDTENSORFLOW10:BUILDINGFACERECOGNITIONUSINGFACENET11:AUTOMATEDIMAGECAPTIONING12:POSEESTIMATIONON3DMODELSUSINGCONVNETS13:IMAGETRANSLATIONUSINGGANSFORSTYLETRANSFER
2025/2/26 15:17:35 unknown Design
1
本例包含reddit论坛数据集,使用rnn对论坛留言进行情感分类。
是rnn入门的简单易学教程。
1
目的:使用CNN卷积神经网络实现语音识别步骤:(1)预处理。
首尾端的静音切除,降低对后续步骤造成的干扰,然后进行声音分帧,把声音切开成帧,,各帧之间一般是有交叠。
(2)特征提取。
运用的算法为倒谱系数(MFCC),把每一帧波形变成一个包含声音信息的多维向量;
(3)RNN模型训练。
有了特征,就可以使用TensorFlow完成模型的建立和训练了。
(4)验证模型。
目标:对相应的声音数据进行分类,例如数据的是数数的数据,能够输出对应的数字。
2024/9/7 10:11:28 5KB cnn 语音识别
1
反向传播算法是人工神经网络训练时采用的一种通用方法,在现代深度学习中得到了大规模的应用。
全连接神经网络(多层感知器模型,MLP),卷积神经网络(CNN),循环神经网络(RNN)中都有它的实现版本。
算法从多元复合函数求导的链式法则导出,递推的计算神经网络每一层参数的梯度值。
算法名称中的“误差”是指损失函数对神经网络每一层临时输出值的梯度。
反向传播算法从神经网络的输出层开始,利用递推公式根据后一层的误差计算本层的误差,通过误差计算本层参数的梯度值,然后将差项传播到前一层
1
基于基本的RNN的Python代码,将其用Matlab实现了,且实验结果比较好
2024/8/8 10:46:40 14KB RNN matlab
1
字符级语言Torch模型的多层递归神经网络(LSTM,GRU,RNN)
2024/8/2 1:17:39 448KB Python开发-机器学习
1
共 51 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡