《MilanSonka-ImageProcessing,AnalysisandMachineVision》是图像处理、分析和机器视觉领域的一本经典教材,第3版提供了高清英文原版的PDF版本。
这本书深入浅出地探讨了图像处理的基础理论和应用,是计算机视觉、电子工程、生物医学工程等相关专业学生和研究人员的重要参考书。
我们要理解图像处理的基本概念。
图像处理涉及到对数字图像进行各种操作,以改善其质量、提取有用信息或进行分析。
这包括图像增强、去噪、分割和复原等技术。
例如,图像增强通过调整亮度、对比度来优化视觉效果;
去噪则通过滤波器去除图像中的噪声;
图像分割将图像区域划分为不同的对象或类别,便于进一步分析。
机器视觉则是图像处理的一个重要应用领域,它使计算机能够“看”并理解图像。
在《MilanSonka》一书中,读者可以学习到如何构建和应用机器视觉系统。
这包括特征检测(如边缘检测、角点检测)、模板匹配、模式识别和物体识别等技术。
这些技术在自动驾驶、无人机导航、工业自动化和医疗诊断等领域有着广泛应用。
此外,书中还涵盖了与机器学习相关的主题,如监督学习和无监督学习,它们在图像分类、目标检测和图像识别任务中至关重要。
支持向量机(SVM)、神经网络、深度学习框架(如卷积神经网络CNN)等现代机器学习方法也是书中讨论的重点。
深度学习,尤其是深度卷积网络,已经在图像处理和计算机视觉领域取得了突破性进展,极大地推动了人脸识别、图像生成和自动驾驶等技术的发展。
书中还涉及到了图像分析,这是对图像内容进行理解和解释的过程。
这包括图像理解、场景分析和行为识别。
图像理解需要从图像中提取高级语义信息,比如识别出图像中的物体、场景和事件。
场景分析则涉及环境的理解,例如确定图像中的背景、前景和物体之间的关系。
行为识别则关注动态图像中的动作和活动,如行人跟踪和运动分析。
书中还涵盖了实际应用中的算法实现和评估方法,这对于任何从事图像处理和机器视觉研究的人来说都是必不可少的知识。
实验部分通常会介绍如何使用编程语言(如MATLAB或Python)实现所讨论的算法,并提供数据集和代码示例。
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是一部全面覆盖图像处理、分析和机器视觉的教材,无论你是初学者还是经验丰富的专业人士,都能从中受益匪浅。
通过深入学习这本书,你可以掌握图像处理的基本原理,理解机器视觉的核心技术,并了解如何将这些知识应用于实际项目中。
2024/12/18 9:29:46 26.8MB 图像处理
1
SVM支持向量机,预测分类回归,支持向量机(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
2024/11/26 14:13:05 415KB SVM 支持向量机
1
脉冲神经网络亲测运行实例,Python版本的,正确不用调,所用的神经元模型为IF模型,进行STDP无监督学习,数据集为MNIST,可供学习。
2024/11/26 8:01:12 13.61MB 脉冲神经网络 IF模型 STDP
1
目前LS-SVMlab工具箱用户指南包含了大量MATALAB中LS-SVM算法的实现,其中涉及分类,回归,时间序列预测和无监督学习。
所有的功能都已经用Matlab从R2008a,R2008b,R2009a测试,工具箱中参考命令都以打印字体书写。
2024/9/29 1:32:49 511KB 中文 库文件 最小支持向量机
1
自动驾驶车辆的本质是轮式移动机器人,是一个集模式识别、环境感知、规划决策和智能控制等功能于一体的综合系统。
人工智能和机器学习领域的进步极大推动了自动驾驶技术的发展。
当前主流的机器学习方法分为:监督学习、非监督学习和强化学习3种。
强化学习方法更适用于复杂交通场景下自动驾驶系统决策和控制的智能处理,有利于提高自动驾驶的舒适性和安全性。
2024/9/10 5:12:16 1.67MB 强化学习 自动驾驶
1
引入辅助任务信息有助于立体匹配模型理解相关知识,但也会增加模型训练的复杂度。
为解决模型训练对额外标签数据的依赖问题,提出了一种利用双目图像的自相关性进行多任务学习的立体匹配算法。
该算法在多层级渐进细化过程中引入了边缘和特征一致性信息,并采用循环迭代的方式更新视差图。
根据双目图像中视差的局部平滑性和左右特征一致性构建了损失函数,在不依赖额外标签数据的情况下就可以引导模型学习边缘和特征一致性信息。
提出了一种尺度注意的空间金字塔池化,使模型能够根据局部图像特征来确定不同区域中不同尺度特征的重要性。
实验结果表明:辅助任务的引入提高了视差图精度,为视差图的可信区域提供了重要依据,在无监督学习中可用于确定单视角可见区域;在KITTI2015测试集上,所提算法的精度和运行效率均具有一定的竞争力。
1
机器学习시작!!!机器学习1일차이이다!!에에문룰들룰들룰들다다다다다다다다다다다다다다다다다다다监督学习>>标签주기적으로적으(训练数据集)ex)고양이사고양이label을구별한다例)regression로투자프르그램프르그램,-휴대폰배터리측정-回归(회귀)回归(회귀)란이란:변수변수해해측측해터나터나터나터나영향영향영향영향영향영향영향영향용이용无监督学习>>Super이터를보고tensorflow기초tensorflow会话(Session)会话(Session.run)tensorflow发行人Tensor()发行人!!(Session을!!같다같같같같같같)))))시점에서는v2이고Session에서만v1용사때문에기때문에importtensorflow.compat.v1astf\ntf.disable_v2_behavi
2024/8/14 14:31:13 61.32MB JupyterNotebook
1
在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。
这么说可能理解起来不是很清晰,没关系,后面有具体的例子。
监督学习可分为“回归”和“分类”问题。
监督学习分类在回归问题中,我们会预测一个连续值。
也就是说我们试图将输入变量和输出用一个连续函数对应起来;
而在分类问题中,我们会预测一个离散值,我们试图将输入变量与离散的类别对应起来。
下面举两个例子,就会非常清楚这几个概念了。
通过房地产市场的数据,预测一个给定面积的房屋的价格就是一个回归问题。
这里我们可以把价格看成是面积的函数,它是一个连续的输出值。
但是,当把上面的问题改为“预测一个给定面积的房
1
决策树方法在分类、预测、规则提取等领域有着广泛应用。
在20世纪70年代后期和80年代初期,机器学习研究者J.RossQuinilan提出了ID3[5-2]算法以后,决策树在机器学习、数据挖掘邻域得到极大的发展。
Quinilan后来又提出了C4.5,成为新的监督学习算法。
1984年几位统计学家提出了CART分类算法。
ID3和ART算法大约同时被提出,但都是采用类似的方法从训练样本中学习决策树。
2024/3/11 4:56:35 1.4MB 数据挖掘 大数据 Rapidminer
1
生成式对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。
2024/2/17 5:39:41 4KB python 实现 代码 gan
1
共 25 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡