这个压缩包里共包括两个源代码,分别是训练算法,实际分类检测算法,主要是利用BP神经网络来分类。
训练算法的原理可以直接参考,实际分类检测就是利用训练好的BP神经网络参数来进行分类。
我的BP网络结构是3层,783结构。
2025/11/5 18:07:08 31.97MB BP 分类 神经网络
1
随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长。
对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持。
为了满足这种需求,数据挖掘技术的得到了长足的发展,而分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。
本文主要侧重数据挖掘中分类算法的效果的对比,通过简单的实验(采用开源的数据挖掘工具-Weka)来验证不同的分类算法的效果,帮助数据挖掘新手认识不同的分类算法的特点,并且掌握开源数据挖掘工具的使用。
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。
分类算法通过对已知类别训
2025/11/1 2:56:47 464KB 数据挖掘-分类算法比较
1
半监督matlab代码--经过调试--可用。
2025/8/29 18:17:11 91KB 半监督 matlab
1
包含基于特征降维的语音情感识别、基于支持向量机的语音情感识别、基于神经网络的语音情感识别、基于K近邻分类算法的语音情感识别程序
2025/8/8 16:40:15 15.59MB matlab 情感识别 svm 特征降维
1
SVM算法的代码,用matlab实现的,可直接用,很方便,下载即可用!该算法可用于机器学习分类研究,是一种典型的分类算法,非常适合论文实验。
2025/8/5 22:46:47 16KB SVM 机器学习 文本分类 情感分析
1
利用matlab实现的贝叶斯分类算法,其中包含数据格式转换算法,交叉验证算法和数据集统计算法,是UCI数据集通用的分类算法,准确率达到0.9427.
2025/8/3 13:15:07 5KB matlab beys UCI
1
用可定制的评估指标树来描述客户分类的评价体系,让用户自主确定每个评价指标。
在此基础上,提出了一种基于模糊聚类分析的客户分类算法,对客户进行分类管理,并给出了一个计算实例,取得了正确的计算结果。
该计算实例表明,这个算法可以用于关于客户关系管理的决策支持系统中。
1
算法有关联算法Apriori,分类算法BP、adboost,KNN,聚类算法kmeans、kmedoids、Clarans,回归有线性回归,里面程序代码有自带样例,下载相应包即可运行
2025/7/9 18:20:37 337KB 聚类 分类 回归 关联
1
使用极限学习机的大数据并行多分类算法
2025/6/30 22:15:19 2.12MB 研究论文
1
针对高光谱图像特征利用不足和训练样本难以获取的问题,提出了一种具有多特征和改进堆栈稀疏自编码网络的高光谱图像分类算法。
采用流形学习获得高光谱图像的低维数据结构,并提取高光谱图像的光谱特征、具有空间信息的局部二值模式(LBP)特征及拓展多属性剖面(EMAP)特征。
利用主动学习查询特征性强的未标记样本并将其标记,利用融合空谱联合信息的样本训练堆栈主动稀疏自编码神经网络并用Softmax分类器对其分类。
Indianpines数据集的总体分类精度达到98.14%,PaviaU数据集总体分类精度达到97.24%。
实验结果表明,该算法分类精度高,边界点分类效果更好。
2025/6/29 4:53:23 12.88MB 图像处理 高光谱图 多特征 流形学习
1
共 110 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡