5V继电器模块,采用EL817光耦隔离,低电平触发&LM317可调稳压模块(电赛作品中用到的模块,下载后可直接打板焊接使用,Altiumdesigner6.9设计)
2024/12/13 0:07:58 2.07MB 继电器 LM317
1
本模块实现高低电平噪声滤波功能,即将高电平和低电平持续时间低于阈值的脉冲都滤除。
程序首先滤除高电平噪声,而后滤除低电平噪声。
输出脉冲与输入脉冲间有两个阈值长短的时间延迟。
程序中时钟为1MHz,阈值FilterThreshold为100us,可根据实际情况进行设置。
程序中高低电平的阈值取的一样,可分别设置。
敬请注意,由于时延影响,若FilterThreshold为100,则低于101的都被滤除,大于等于102的才能通过。
2024/10/8 17:27:38 277KB Verilog 滤波 脉宽鉴别
1
1、掌握低电平调制电路组成与基本工作原理。
2、熟悉低电平调制种类。
3、掌握各种低电平调制电路各项主要技术指标意义及测试技能。
1
LED一般是恒流点亮的,如何改变LED的亮度呢?答案就是PWM控制。
在一定的频率的方波中,调整高电平和低电平的占空比,即可实现。
比如我们用低电平点亮一个LED灯,我们假设把一个频率周期分为10个时间等份,如果方波中的高低电平占空比是9:1,这是就是一个比较暗的亮度,如果方波中高低电平占空比是10:0,这时,全部是高电平,灯是灭的。
如果占空比是5:5,就是一个中间亮度,如果高低比是1:9,是一个比较亮的亮度,如果高低是0:10,这时全部是低电平,就是最亮的。
2024/5/12 4:36:28 22KB LED
1
LPM_ROM和LPM_RAM设计一实验目的掌握FPGA中LPM_ROM的设置:1作为只读寄存器ROM的工作特性和配置方法;
2学习将程序代码或数据以MIF格式文件加载于LPM_ROM中;
掌握lpm_ram_dp的参数设置和使用方法:1掌握lpm_ram_dp作为随即存储器RAM的设置;
2掌握lpm_ram_dp的工作特性和读写方法;
3掌握lpm_ram_dp的仿真测试方法。
二实验要求1LPM_ROM定制和测试LPM_ROM的参数设置:LPM_ROM中数据的写入,即初始化文件的编写;
LPM_ROM的实际应用,在GW48实验台上用N0.0电路模式测试。
2LPM_RAM定制和测试LPM_RAM的参数设置;
LPM_RAM的实际应用,在GW48实验台上用N0.0电路模式测试。
三实验原理用户可编程硬件FPGA芯片设计,有许多可调用参数化库模块LPM(LibraryParameterizedModules),课直接调用设置,利用嵌入式阵列块EAB(EmbedArrayBlock)构成lpm_ROM,lpm_RAM等各种存储器结构。
Lpm_ROM有5组信号:地执信号address[];
数据信号q[];时钟信号inclock、outclock;允许信号memenable.其参数是可以设定的。
由于ROM是只读寄存器,它的数据口试单向的输出端口,数据是在对FPGA现场配置时,通过配置文件一起写入存储单元的。
Lpm_ram_dq的输入/输出信号如下:地址信号address[];RAM_dqo的存储单元地址;
数据输入信号DATA[]RAM_dqo的数据输入端;
数据输出信号Q[];
RAM_dqo的数据输出端;
时钟信号CLK;读/写时钟脉冲信号;
读写信号W/R读/写控制信号端数据从总线端口DATA[]输入。
丹输入数据和地址准备好以后,由于在inclock上的信号是地址锁存时钟,当信号上升沿到来时,地址被锁存,于是数据被写入存储单元。
数据的读出控制是从A[]输入存储单元地址,在CLK信号上升沿到来时,该单元数据从Q[]输出。
W/R为读/写控制端,低电平时进行读操作,高电平时进行写操作;
四实验步骤
2023/11/14 3:08:52 123KB LPM_ROM和LPM_RAM设计
1
异步清除是指复位信号有效时,直接将计数器的状态清零。
在本设计中,复位信号为clr,低电平有效;
时钟信号时clk,上升沿是有效边沿。
在clr清除信号无效的的前提下,当clk的上升沿到来时,如果计数器原态是9(“1001”),计数器回到0(“0000”)态,否则计数器的状态将加1。
1
关于Proteus仿真ADC0809,说明以下几点:1、在Proteus中,ADC0809是不可仿真的。
但可以用ADC0808代替ADC0809进行仿真。
ADC0808与ADC0809有相同的引脚,功能极为相似。
在Proteus中,可以认为:ADC0808就是ADC0809。
2、说明几个关键引脚的输出信号:1)OE数据输出允许信号,高电屏有效(意思就是,当OE接高电屏时才允许将转换后的结果从ADC0808的OUT1~OUT8引脚输出,否则,在内部锁存)。
2)ADC0808的ALE信号(22引脚),以及START信号(6引脚)ALE称为“地址锁存允许信号”,高电屏有效。
就是说:ALE=1时,允许将ADDA~ADDC的地址输入到ADC0808的内部译码器,经过译码后选定外部模拟量的输入通道。
START信号,这是一个必须重点掌握的信号,向START送入一个高脉冲,其上升沿使ADC0808内部的“逐次逼近寄存器SAR”复位,其下降沿可以*启动A/D转换,并同时使EOC引脚为低电平*(两个*之间的内容必须牢记!)。
应注意到:ALE是高电屏有效,而START的有效部分只是上升沿和下降沿,所以在连接电路时可以将ALE信号与ST
2023/7/25 16:36:19 36KB Proteus AD转换 单片机
1
微弱信号测量领域全球排名第1的keithley公司编写的《低电平测量手册》,对于测量微弱电流、电压信号及高阻的测量非常使用。
我从网上下载的,编辑成word文档的,费了我一个下午的功夫。
2023/7/5 13:58:36 9.37MB 微弱信号测量
1
/* CX20106A超声波发送与接受法度圭表标准 40KHz脉冲由单AT89S52单片机P1.0口送出,由P3.2(INT0)付与中断方式付与。
按时器0,按时器1中断方式责任,T1为8位自动重装方式(按时12.5us),T0为16位按时器(按时约65ms) 超声波接受付与内部中断INT0,接受到返回脉冲后,在内部中断法度圭表标准中计算距离。
65ms超声波传布距离约65×10^(-3)× 340m/s=22.1m,距离足够了,远超CX20106A的丈量规模。
40KHz对于应波周期T=1/40KHz=25us,方波高占空比50%,上下电平宽度分别占0.5T=12.5us。
按时器T1付与8位自动重装方式(按时12.5us),在单片机付与12MHz晶振的前提下,(2^8-X)×12/12us=12.5us (1)当X=0xF3时,2^8-X=13,(2)当X=0xF4时,2^8-X=12, 所以,取X=0xF3,0xF4均能够满足计时申请。
距离表普通4位数码管上,单元为cm。
*//*单片机P2口接74HC138(三八译码器)P2.3--74HC138:/EI、P2.2--74HC138:A二、P2.1--74HC138:A一、P2.0--74HC138:A0译码器输入Y0,Y一、Y二、Y三、Y四、Y五、Y六、Y7均低电平实用,分别选通1~8个数码管。
搜罗2个四位一体数码管LG3641BH,共2x4=8个数码管。
数码管数据口为P0口。
数码管为共阳4位一体数码管。
成果:译码器输入为1——8个数码管的段选信号,轮流遴选1——8数码管。
dispaly(uintd)将d(distance)的千、百、十、个按次表普通1~3号数码管上。
展现原理: 一、送出要展现的段数 二、P2译码,选摘要展现的位 三、延时1——2ms,功夫不能过长,不然会闪灼,也不能过短,不然会很暗。
四、作废段选,消隐! 若要展现多段,重复以上4步!*/
2023/4/28 6:54:01 1.73MB CX20106A 超声波 测距 keil
1
一、适用于STM32RCT6最小体系板,霍尔3144传感器模块(责任电压4.5~24V,驱动电流<25mA)二、具备看门狗防去世机成果三、具备盘问或者中断两种方式,使用盘问方式时按键的NVIC_Init函数需屏障(中断方式下场更好)四、无触发时3144输入低电平,模块输入低电平;
触发时3144输入高电平,模块输入高电平五、对于TO-92S封装的芯片,N极磁场濒临芯片标志面不能触发芯片责任,N极磁场能够从标志面的友善濒临芯片以触发芯片导通;
对于SOT-23封装的芯片,感应面与TO-92S封装的相同,需以N极磁场传染芯片的标志面。
2023/4/3 13:19:52 5.9MB 霍尔3144 STM32 源码
1
共 21 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡