招聘系统的设计与实现是把求职招聘的基本业务与网络技术结合在一起来实现的。
系系统是通过Java技术来实现。
并把MySQL作为数据库来存储数据使用。
系统分为了求职者模块、企业ER模块、系统管理员模块、求职者可以在线注册登录,填写个人的基本信息和简历,查看搜索所有的招聘职位,并可以给企业递交简历。
企业ER主要是发布所属企业的招聘职位信息,并可以查看投递到本公司的所有求职人的基本信息和简历,合适的求职者发送面试邀请。
管理员负责企业职位、企业ER和求职者等基本内容的管理和维护。
2024/1/27 3:31:24 25.09MB 求职招聘 网上求职 毕业设计 Java
1
完整的免费编码训练营2020-MERN堆栈(面向初学者)这是一个系列视频,我们将使用MERNSTACK(MongoDB,Express,React.js和Nodejs)从头开始构建一个全栈应用程序。
我们将构建用于创建体育赛事的SportsWeb应用,该应用将包括:用户注册和身份验证(如果该系列很受欢迎,则可以添加facebook/gmail登录)散列密码以确保安全会话控制CRUD操作(创建,读取,更新和删除)使用过滤器(跑步,骑自行车或游泳)搜索事件报名参加活动以参加将图像上传到服务器使用Web套接字的网站通知(以批准或拒绝“事件注册”请求)项目里程碑
2024/1/26 22:50:41 4.13MB react frontend sockets freecodecamp
1
DifferentialEquationsandLinearAlgebra(4th)英文无水印原版pdf第4版pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开本资源转载自网络,如有侵权,请联系上传者或csdn删除查看此书详细信息请在美国亚马逊官网搜索此书EditorialDirector,Mathematics:ChristinehoagEditor-in-Chief:DeirdreLynchAcquisitionsEditor:WilliamHoffmaProjectTeamLead:ChristinaleProjectmanager:LaurenMorseEditorialAssistant:JenniferSnyderProgramTeamLead:KarenwernholmProgramManagerDaniellesimbajonCoverandillustrationDesign:StudioMontageProgramDesignLead:BethPaquinProductMarketingManagerClaireKozarProductMarketingCoordiator:BrookesmithFieldMarketingManager:EvanStCyrSeniorAuthorSupport/TechnologySpecialist:JoevetereSeniorProcurementSpecialist:CarolMelvilleInteriorDesign,ProductionManagement,AnswerArt,andCompositioneNergizerAptara,LtdCoverImage:LighttrailsonmodernbuildingbackgroundinShanghai,China-hxdyl/123RFCopyrightO2017,2011,2005PearsonEducation,Inc.oritsaffiliates.AllRightsReserved.PrintedintheUnitedStatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopyingrecording,orotherwise.Forinformationregardingpermissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissionsdepartmentpleasevisitwww.pearsoned.com/permissions/PEARSONandALWAYSLEARNINGareexclusivetrademarksintheU.s.and/orothercountriesownedbyPearsonEducation,Inc.oritsaffiliatesUnlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowandanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeordescriptivepurposesonly.SuchofsuchmarksoranyrelationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesordistributortreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonsproductsbytheownersLibraryofCongressCataloging-in-PublicationDataGoode.StephenwDifferentialequationsandlinearalgebra/StephenW.GoodeandScottA.AnninCaliforniastateUniversity,Fullerton.-4theditionpagescmIncludesindexISBN978-0-321-96467-0—ISBN0-32196467-51.Differentialequations.2.Algebras,Linear.I.Annin,Scott.II.TitleQA371.G6442015515’.35-dc23201400601512345678910V031-1918171615PEARSONISBN10:0-321-96467-5www.pearsonhighered.comISBN13:978-0-321-96467-0ContentsPrefacevii1First-OrderDifferentialEquations1.1DifferentialEquationsEverywhere11.2BasicIdeasandTerminology131.3TheGeometryofFirst-OrderDifferentialEquations231.4SeparableDifferentialEquations341.5SomeSimplePopulationModels451.6First-OrderLinearDifferentialEquations531.7ModelingProblemsUsingFirst-OrderLinearDifferentialEquations61.8Changeofvariables711.9ExactDifferentialEquations821.10Numericalsolutiontofirst-OrderDifferentialEquations931.11SomeHigher-OrderDifferentialEquations1011.12ChapterReview1062MatricesandSystemsofLinearEquations1142.1Matrices:Definitionsandnotation1152.2MatrixAlgebra1222.3TerminologyforSystemsofLinearEquations13824R。
w-EchelonMatricesandElementaryR。
wOperations1462.5Gaussianelimination1562.6TheInverseofasquarematrix1682.7ElementaryMatricesandtheLUFactorization1792.8TheInvertiblematrixtheoremi1882.9ChapterReview1903Determinants1963.1TheDefinitionofthedeterminant1963.2PropertiesofDeterminants2093.3CofactorExpansions2223.4SummaryofDeterminants2353.5ChapterReview242iyContents4VectorSpaces2464.1Vectorsinrn2484.2DefinitionofaVectorSpace2524.3Subspaces2634.4SpanningSets2744.5LinearDependenceandLinearIndependence2844.6Basesanddimension2984.7Changeofbasis3114.8RowSpaceandColumnSpace3194.9TheRank-NullityTheorem3254.10InvertibleMatrixTheoremll3314.11ChapterReview3325InnerProductSpaces3395.1DefinitionofanInnerproductspace3405.2OrthogonalSetsofvectorsandorthogonalProjections3525.3Thegram-Schmidtprocess3625.4LeastSquaresApproximation3665.5ChapterReview3766LinearTransformations3796.1Definitionofalineartransformation3806.2Transformationsofr23916.3TheKernelandrangeofalineartransformation3976.4AdditionalPropertiesofLinearTransformations4076.5Thematrixofalineartransformation4196.6Chaiterreview4287EigenvaluesandEigenvectors4337.1TheEigenvalue/EigenvectorProblem4347.2GeneralResultsforEigenvaluesandEigenvectors4467.3Diagonalization4547.4AnIntroductiontotheMatrixExponentialFunction4627.5OrthogonalDiagonalizationandQuadraticforms4667.6Jordancanonicalforms4757.7Chapterreview4888LinearDifferentialEquationsofOrdern4938.1GeneralTheoryforLinearDifferentialEquations4958.2ConstantCoefficientHomogeneousLinearDifferentialEquations5058.3ThemethodofundeterminedcoefficientsAnnihilators5158.4Complex-ValuedTrialSolutions5268.5OscillationsofaMechanicalSystem529Contentsv8.6RLCCircuits5428.7TheVariationofparametersmethod5478.8ADifferentialEquationwithNonconstantCoefficients5578.9Reductionoforder5688.10ChapterReview5739SystemsofDifferentialEquations5809.1First-OrderLinearSystems5829.2VectorFormulation5889.3GeneralResultsforfirst-OrderLinearDifferentialystems5939.4VectorDifferentialEquations:NondefectiveCoefficientMatrix5999.5VectorDifferentialEquations:DefectiveCoefficientMatrix6089.6Variation-of-ParametersforLinearSystems6209.7SomeApplicationsofLinearSystemsofDifferentialEquations6259.8MatrixExponentialFunctionandSystemsofDifferentialEquations6359.9ThePhasePlaneforLinearAutonomousSystems6439.10NonlinearSystems6559.11ChapterReview66310TheLaplaceTransformandSomeElementaryApplications67010.1DefinitionoftheLaplaceTransform67010.2TheExistenceofthelaplacetransformandtheInversetransform67610.3PeriodicFunctionsandtheLaplacetransform68210.4ThetransformofderivativesandsolutionofInitial-Valueproblems68510.5TheFirstShiftingTheorem69010.6TheUnitStepFunction69510.7TheSecondShiftingTheorem69910.8ImpulsiveDrivingTerms:TheDiracDeltaFunction70610.9TheConvolutionIntegral71110.10ChapterReview71711SeriesSolutionstoLinearDifferentiaEquations72211.1AReviewofpowerseries72311.2SeriesSolutionsaboutanOrdinaryPoint73111.3TheLegendreEquation74111.4SeriesSolutionsaboutaRegularSingularPoint75011.5Frobeniustheory75911.6Bessel'sEquationofOrderp77311.7Chapterreview785ViContentsAReviewofComplexNumbers791BReviewofPartialFractions797CReviewofIntegrationTechniques804DLinearlyIndependentSolutionstox2y+xp(x)y+g(x)y=0811Answerstoodd-NumberedExercises814Index849S.W.GoodededicatesthisbooktomeganandtobiS.A.annindedicatesthisbooktoarthurandJuliannthebestparentsanyonecouldaskforPretraceLikethefirstthreeeditionsofDifferentialEquationsandLinearalgebra,thisfourtheditionisintendedforasophomorelevelcoursethatcoversmaterialinbothdifferentialequationsandlinearalgebra.Inwritingthistextwehaveendeavoredtodevelopthestudentsappreciationforthepowerofthegeneralvectorspaceframeworkinformulatingandsolvinglinearproblems.Thematerialisaccessibletoscienceandengineeringstu-dentswhohavecompletedthreesemestersofcalculusandwhobringthematurityofthatsuccesswiththemtothiscourseThistextiswrittenaswewouldnaturallyteachblendinganabundanceofexamplesandillustrations,butnotattheexpenseofadeliberateandrigoroustreatment.MostresultsareprovenindetailHowever,manyofthesecanbeskippedinfavorofamoreproblem-solvingorientedapproachdependingonthereader'sobjectives.Somereadersmayliketoincorporatesomeformoftechnology(computeralgebrasystem(CAS)orgraphingcalculator)andthereareseveralinstancesinthetextwherethepoweroftechnologyisillustratedusingtheCasMaple.Furthermore,manyexercisesetshaveproblemsthatrequiresomeformoftechnologyfortheirsolutionTheseproblemsaredesignatedwithaoIndevelopingthefourtheditionwehaveoncemorekeptmaximumflexibilityofthematerialinmind.Insodoing,thetextcaneffectivelyaccommodatethedifferentemphasesthatcanbeplacedinacombineddifferentialequationsandlinearalgebracourse,thevaryingbackgroundsofstudentswhoenrollinthistypeofcourse,andthefactthatdifferentinstitutionshavedifferentcreditvaluesforsuchacourse.Thewholetextcanbecoveredinafivecredit-hourcourse.Forcourseswithalowercredit-hourvalue,someselectivitywillhavetobeexercised.Forexample,much(orall)ofChapterImaybeomittedsincemoststudentswillhaveseenmanyofthesedifferentialequationstopicsinanearliercalculuscourse,andtheremainderofthetextdoesnotdependonthetechniquesintroducedinthischapter.Alternatively,whileoneofthemajorgoalsofthetextistointerweavethematerialondifferentialequationswiththetoolsfromlinearalgebrainasymbioticrelationshipasmuchaspossible,thecorematerialonlinearalgebraisgiveninChapters2-7sothatitispossibletousethisbookforacoursethatfocusessolelyonthelinearalgebrapresentedinthesesixchapters.ThematerialondifferentialequationsiscontainedprimarilyinChapters1and8-1l,andreaderswhohavealreadytakenafirstcourseinlinearalgebracanchoosetoproceeddirectlytothesechaptersThereareothermeansofeliminatingsectionstoreducetheamountofmaterialtobecoveredinacourse.Section2.7containsmaterialthatisnotrequiredelsewhereinthetext,Chapter3canbecondensedtoasinglesection(Section3.4)forreadersneedingonlyacursoryoverviewofdeterminants,andSections4.7,5.4,andthelatersectionsofChapters6and7couldallbereservedforasecondcourseinlinearalgebra.InChapter8Sections8.4,8.8,and8.9canbeomitted,and,dependingonthegoalsofthecourse,Sections8.5and8.6couldeitherbede-emphasizedoromittedcompletelySimilarremarksapplytoSections9.7-9.10.AtCaliforniaStateUniversity,Fullertonwehaveafourcredit-hourcourseforsophomoresthatisbasedaroundthematerialinChapters1-9viiiPrefaceMajorChangesintheFourthEditionSeveralsectionsofthetexthavebeenmodifiedtoimprovetheclarityofthepresentationandtoprovidenewexamplesthatreflectinsightfulillustrationswehaveusedinourowncoursesatCaliforniaStateUniversity,Fullerton.OthersignificantchangeswithinthetextarelistedbeleOW1.ThechapteronvectorspacesinthepreviouseditionhasbeensplitintotwochaptersChapters4and5)inthepresentedition,inordertofocusseparateattentiononvectorspacesandinnerproductspaces.Theshorterlengthofthesetwochaptersisalsointendedtomakeeachofthemlessdaunting2.Thechapteroninnerproductspaces(Chapter5)includesanewsectionprovidinganapplicationoflinearalgebratothesubjectofleastsquaresapproximation3.Thechapteronlineartransformationsinthepreviouseditionhasbeensplitintotwochapters(Chapters6and7)inthepresentedition.Chapter6isfocusedonlineartransformations,whileChapter7placesdirectemphasisonthetheoryofeigenvaluesandeigenvectors.Oncemore,readersshouldfindtheshorterchapterscoveringthesetopicsmoreapproachableandfocused4.Mostexercisesetshavebeenenlargedorrearranged.Over3,000problemsarenowcontainedwithinthetext,andmorethan600concept-orientedtrue/falseitemsarealsoincludedinthetext5.Everychapterofthebookincludesoneormoreoptionalprojectsthatallowformorein-depthstudyandapplicationofthetopicsfoundinthetext6.ThebackofthebooknowincludestheanswertoeveryTrue-FalsereviewitemcontainedinthetextAcknowledgmentsWewouldliketoacknowledgethethoughtfulinputfromthefollowingreviewersofthefourthedition:JameyBassofCityCollegeofSanFrancisco,TamarFriedmannofUniversityofrochester,andlinghaiZhangofLehighUniversityAlloftheircommentswereconsideredcarefullyinthepreparationofthetextS.A.Annin:Ioncemorethankmyparents,ArthurandJuliannAnnin,fortheirloveandencouragementinallofmyprofessionalendeavors.Ialsogratefullyacknowledgethemanystudentswhohavetakenthiscoursewithmeovertheyearsand,insodoinghaveenhancedmyloveforthesetopicsanddeeplyenrichedmycareerasaprofessorFirst-OrderDifferentiaEquations1.1DifferentialEquationsEverywhereadifferentialequationisanyequationthatinvolvesoneormorederivativesofanunknownfunction.Forexample(1.1.1dxds(S-1)(1.1.2)aredifferentialequations.Inthedifferentialequation(1.1.1)theunknownfunctionordependentvariableisy,andxistheindependentvariable;inthedifferentialequation(1.1.2)thedependentandindependentvariablesareSandt,respectively.Differentialequationssuchas(1.1.1)and(1.1.)inwhichtheunknownfunctiondependsonlyonasingleindependentvariablearecalledordinarydifferentialequations.Bycontrast,thedifferentialequationLaplace'sequation)0involvespartialderivativesoftheunknownfunctionu(x,y)oftwoindependentvariablesxandy.SuchdifferentialequationsarecalledpartialdifferentialequationsOnewayinwhichdifferentialequationscanbecharacterizedisbytheorderofthehighestderivativethatoccursinthedifferentialequationThisnumberiscalledtheorderofthedifferentialequation.Thus,(l1.1)hasordertwo,whereas(1.1.2)isafirst-orderdifferentialequation1
2024/1/26 14:10:04 16.51MB Differential Equations Linear Algebra
1
詹金斯·林特的想法插件jenkins-linter-idea-plugin是一个IntellijIdea插件,用于通过Jenkins服务器的验证Jenkinsfiles。
特征仅支持声明性管道HTTPlinter集成清除错误突出显示安装该插件可以通过“设置”|“安装”来安装。
插件|市场和搜索詹金斯管道短绒。
设定值插件的设置可以在“设置”|“设置”下找到。
工具|詹金斯·林特(JenkinsLinter)。
用法通过插件设置配置Jenkins服务器连接。
打开文件上的上下文菜单,然后单击“JenkinsLinter验证”贡献随时贡献自己的力量。
新功能建议和错误修复应作为GitHub拉取请求提交。
在GitHub上分叉存储库,准备对分叉副本的更改,然后提交拉取请求。
重要的!在之前,请先阅读有关/
2024/1/22 23:15:33 116KB jenkins linter intellij-plugin kotl
1
6种非常精美的Web前端搜索框展示(附源码)
2024/1/22 20:39:24 7KB 前端 web 框架 UI
1
MFC实现迷宫搜索——Easy参考,简单版本,主要是给初入MFC的小伙伴们一个参考
2024/1/22 19:16:02 41.67MB MFC 迷宫搜索 DFS 搜索
1
1.环境win7+qt5.3.1WinGW32bit2.使用glm3.使用孙启功的方法4.网上下载的obj模型文件5.我仅仅是用别人的方法和文件进行了简单的实践6.因为工作需要,搜索一番不容易找到有用的东西,所以在此留个备份
2024/1/22 19:16:11 3.23MB opengl glm obj qt
1
花了我上百积分买的其他资源,整个的一哥控件库,axure网页原型库,android原型库,iphone原型库,网页导航,网页搜索,网页常用图标,经典原型,导航条,日期控件等,Axure的原型控件,方便产品经理设计产品原型,与大家共享资源,Axure8+组件库,主要用于产品设计,包含类型丰富,希望可以帮助到大家。
2024/1/22 17:08:44 198.7MB Axure  Axure控件 网页制作 工具
1
·1.内容简介:---------------------------------------------------------------这是一个压缩包,里面是文件是东南大学Robocup3D仿真比赛的培训资料,当然包括新手上路等资料和平台和基础源代码建议,对Robocup机器人比赛感兴趣或者东南大学以及其他高校的参赛同学下载学习。
否则,会感觉我的文件都不知道什么东西。
---------------------------------------------------------------·2.资源使用方法suseLinux环境下编译运行,注意,必须安装好开发环境和仿真环境。
---------------------------------------------------------------·3.文件组成形式格式:tar.gz创建日期时间文件大小文件名2008-10-1515:56330,2413D新手上路v0.4.pdf2008-10-2217:59372,9525v5rule.pdf2008-10-2218:057,919,214rcss3d-suse-install-11.0.tar.gz2008-10-1023:06343,552RoboCup讲稿.ppt2008-10-2218:04459,785seu-3d-0.3.c.release-5v5.tar.gz2008-10-2218:04240,556SEU-3D-5v5.tar.gz2008-10-2217:57208,384SEU-3D框架结构.doc2008-10-2010:51835,301入门材料v1.01[1].zip2008-10-2217:583,197,172毕业设计.rar2008-11-2823:53170,496第五届RoboCup竞赛获奖名单.doc2008-10-2218:051,338,283第四届前十.rar2008-10-1516:2543,520驱动安装.doc---------------------------------------------------------------·4.wogeguaiguai的附言:1.我的其他数学建模精华资源也欢迎您下载,大学生基本上都听过这个比赛吧,这个比赛比较有意思,而且获奖比例高。
我的资料都是非常好的准备比赛要用的资料。
我比赛结束之后,这些资料就不用啦,分享给大家!俺一年的搜索资源,同学们一朝即可获得!2.下载本文件后,您可以获得所有信息,不必再零散下载,给您带来很大的方便。
3.10个资源分,绝对物超所值。
评论后,您就可以获得11个资源分,欢迎您评论!---------------------------------------------------------------·5.如有问题,请在此留言,谢谢。
---------------------------------------------------------------·6.上传时间2010-2-24-night
2024/1/22 16:13:08 14.13MB Robocup 3D仿真组 源代码 东南大学
1
好用的电脑文件搜索小工具
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡