这本书是谱方法的经典之作,Springer出版社出版。
谱方法是机器学习中重要的一种方法,利用特征值特征向量,奇异值分解等方法。
本书讲述的是其应用,算法和分析。
道客巴巴上下载需要16,另一个书籍下载网上需要50,csdn上有另一个人传输的这本书只要136页,而本书应该是486页,这是全文版本。
数学书籍决定你未来能走多远。
2020/8/10 23:03:26 3.94MB spectral met
1
本代码用C言语进行编程,可以计算矩阵的特征值和相应的特征向量。
2016/8/24 4:47:08 247KB C语言 特征值 特征向量
1
对文本进行聚类,文本预处理-->构造特征向量-->聚类,紧缩包内含有实验用语料
2022/9/7 14:25:21 685KB 5.1
1
支持向量机是数据挖掘中的一个新方法。
支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。
目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。
希望《数据挖掘中的新方法——支持向量机》能促进它在我国的普及与提高。
《数据挖掘中的新方法——支持向量机》对象既包括关心理论的研究工作者,也包括关心应用的实际工作者。
对于有关领域的具有高等数学知识的实际工作者,略去书中的某些理论部分,仍能对支持向量机的本质有一个概括的理解,从而用它解决自己的问题。
《数据挖掘中的新方法——支持向量机》适合高等院校高年级学生、研究生、教师和相关科研人员及相关领域的实际工作者使用。
序言符号表第1章最优化问题及其基本理论1·1最优化问题1·2最优性条件1·3对偶理论1·4注记参考文献第2章求解分类问题和回归问题的直观途径2·1分类问题的提出2·2线性分类学习机2·3支持向量分类机2·4线性回归学习机2·5支持向量回归机2·6注记参考文献第3章核3·1描述相似性的工具——内积3·2多项式空间和多项式核3·3Mercer核3·4正定核3·5核的构造3·6注记参考文献第4章推广能力的理论估计4·1损失函数和期望风险4·2求解分类问题的一种途径和一个算法模型4·3VC维4·4学习算法在概率意义下的近似正确性4·5一致性概念和关键定理4·6结构风险最小化4·7基于间隔的推广估计4·8注记参考文献第5章分类问题5·1最大间隔原则5·2线性可分支持向量分类机5·3线性支持向量分类机5·4支持向量分类机5·5ν-支持向量分类机(ν-SVC)5·6ν-支持向量分类机(ν-SVC)和C-支持向量分类机(C-SVC)的关系5·7多类分类问题5·8一个例子5·9注记参考文献第6章回归估计6·1回归问题6·2ε-支持向量回归机6·3ν-支持向量回归机6·4ε-支持向量回归机(ε-SVR)与ν-支持向量回归机(ν-SVR)的关系6·5其他方式的支持向量回归机6·6其他方式的损失函数6·7一些例子6·8注记参考文献第7章算法7·1无约束问题解法7·2内点算法7·3求解大型问题的算法7·4注记参考文献第8章应用8·1模型选择问题8·2分类问题的线性分划中的特征选择8·3模型选择8·4静态图像中球的识别8·5自由曲面的重建问题8·6应用简介8·7核技巧的应用8·8注记参考文献附录A基础知识A·1基本定义A·2梯度和Hesse矩阵A·3方向导数A·4Taylor展开式A·5分离定理附录BHilbert空间B·1向量空间B·2内积空间B·3Hilbert空间B·4算子、特征值和特征向量附录C概率C·1概率空间C·2随机变量及其分布C·3随机变量的数字特征C·4大数定律附录D鸢尾属植物数据集英汉术语对照表
2022/9/5 18:46:11 7.74MB 数据挖掘、支持向量机.pdf
1
数值分析朱晓临主编2014年版内容简介本书是为理工科大学各专业普遍开设的“数值分析”或“计算方法”课程编写的教材本书列选安徽省高等学校”十二五”省级规划教材本书主要内容有:线性方程组的数值解法、非线性方程(组)的数值解法、数值逼近(包括插值、三次样条和B样条、最小二乘法、最佳平方逼近与最佳一致逼近)、数值微积分、常微分方程初值问题和边值问题的数值解法以及矩阵特征值、特征向量的数值解法.每章都有大量例题和习题、相关算法的MATLAB程序,并附例题演示;
书末附有习题答案,配有上机实习题,供学生上机实习选用此外,书中给出了所有概念的英文表达以及书中出现的科学家的简介,书末还有相关概念的中英文索引,方便读者查阅.全书阐述严谨脉络分明、深入浅出,注重理论学习和上机实践相结合,介绍方法与阐明原理并重,教授知识与培养能力兼顾,便于教学和自学.本书可以作为理工科大学各专业研究生学位课程的教材,并可供从事科学计算的科技工作者参考
2022/9/3 18:11:25 68.01MB 数学
1
利用聚类技术实现纹理图像分割a)针对合成纹理图像(共有4个合成纹理图像,见文件夹:data\Texture_mosaic)中每一个像素提取纹理特征向量(提取纹理特征的方法可以为课堂讲的,也可以自己查找资料);
b)利用聚类技术(推荐用k-均值聚类,可以从网上查找原码)对特征向量空间中的点进行聚类,类别数可根据图像中的实际纹理类数确定。
最后把类属标签映射成图像方式显示(如下图,其中b、d、f、h为相应的基准分割图像)。
2020/5/14 20:01:48 827KB 聚类技术 纹理图像分割
1
针对用电过程中的盗电窃电问题,基于数据挖掘的思想提出了一种自动检测窃电行为的方法。
通过分析用户用电数据的特点,在循环神经网络(RNN)算法的基础上引入长短期记忆单元(LSTM),通过输入门、输出门与遗忘门等函数选择性地保留记忆单元的输入输出信息,改善算法训练时的梯度消失现象。
将RNN网路改进为并行化网络,将长时间序列的输入特征向量进行片段化处理,克服RNN网络在处理长序列时的信息丢失缺点。
使用国家电网的公开数据集进行仿真实验。
结果表明,在相同的时间复杂度下,相较于传统RNN网络,改进算法对窃电行为的识别精度提升到了92.85%,模型的交叉熵损失下降为0.253,AUC增长至0.871,算法的综合功能显著提升。
2021/9/2 6:54:54 1.41MB RNN 数据挖掘 防窃电 智能电网
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡