书名:《VisualC#.NET串口通信及测控应用典型实例》(电子工业出版社.李江全.邓红涛.刘巧.李伟)PDF格式扫描版,全书分为8章,共369页。
2012年5月出版。
全书压缩打包成3部分,这是第3部分内容简介本书从工程应用的角度出发,通过8个典型应用实例,包括PC与PC、PC与单片机、PC与PLC、PC与远程I/O模块、PC与智能仪器、PC与无线数传模块、Pc与USB数据采集模块等组成的测控系统,利用SerialPort控件和MSComm控件编写C#.NET串口通信程序,并对计算机测控系统中的4类典型应用((模拟量输入(AI)、模拟量输出(AO)、数字量输入(DI)和数字量输出(DO)的程序设计方法进行了详细的讲解。
目录第1章PC与PC串口通信1.1串口通信概述1.1.1串口通信的基本概念1.1.2RS-232C接口标准1.1.3RS-422/485接口标准1.1.4串口通信线路连接1.1.5PC中的串行端口1.1.6虚拟串口的使用1.2VC++.NET串行通信控件与API函数1.2.1MSComm控件的使用1.2.2SerialPort控件的使用1.2.3串行通信API函数1.3PC与PC串口通信实例1.3.1两台PC串口通信1.3.2一台PC双串口互通信第2章PC与单片机串口通信2.1典型单片机开发板简介2.1.1单片机测控系统的组成2.1.2单片机开发板B的功能2.1.3单片机开发板B的主要电路2.2PC与单片机串口通信实例2.2.1PC与单个单片机串口通信2.2.2PC与多个单片机串口通信2.3PC与单片机串口通信测控应用实例2.3.1模拟量输入2.3.2模拟量输出2.3.3开关量输入2.3.4开关量输出第3章PC与西门子PLC串口通信3.1西门子PLC模拟量扩展模块与通信协议3.1.1西门子PLC模拟量输入模块3.1.2西门子PLCPPI通信协议3.2PC与西门子PLC串口通信测控应用实例3.2.1模拟量输入3.2.2模拟量输出3.2.3开关量输入3.2.4开关量输出第4章PC与三菱PLC串口通信4.1三菱PLC特殊功能模块与通信协议4.1.1FX2N系列PLC的特殊功能模块4.1.2三菱PLC编程口通信协议4.2PC与三菱PLC串口通信测控应用实例4.2.1模拟量输入4.2.2模拟量输出4.2.3开关量输入4.2.4开关量输出第5章PC与分布式I/O模块串口通信5.1典型分布式I/O模块简介5.1.1集散控制系统的结构与特点5.1.2ADAM4000远程数据采集控制系统5.1.3ADAM4000系列模块简介5.1.4ADAM4000系列模块的软件安装5.2PC与分布式I/O模块串口通信测控应用实例5.2.1模拟量输入5.2.2模拟量输出5.2.3数字量输入5.2.4数字量输出第6章PC与智能仪器串口通信6.1典型智能仪器简介6.1.1智能仪器的结构与特点6.1.2XMT-3000A型智能仪器的通信协议6.2PC与智能仪器串口通信测控应用实例6.2.1PC与单台智能仪器温度测控6.2.2PC与多台智能仪器温度测控第7章PC与无线数据传输模块串口通信7.1典型无线数传模块简介7.1.1无线数传技术概述7.1.2DTD46X系列无线数传模块7.2PC与无线数传模块串口通信测控应用实例7.2.1设计任务7.2.2线路连接7.2.3利用C51语言实现基于DS18B20的单片机温度测控7.2.4利用汇编语言实现基于DS18B20的单片机温度测控7.2.5利用VC++.NET实现PC与无线数传模块温度测控第8章USB串行总线模块测控应用8.1USB总线在数据采集系统中的应用8.1.1USB总线及其数据采集系统的特点8.1.2采用USB传输的数据采集系统8.1.3典型USB数据采集模块及应用8.1.4VC++.NET数据采集与控制的方式8.2PC与USB数据采集模块测控应用实例8.2.1模拟量输入8.2.2模拟量输出8.2.3数字量输入8.2.4数字量输出参考文献
2023/7/14 14:23:58 40.53MB 串口通信
1
基于stm32模拟路灯控制系统.
2023/7/14 0:25:46 4.82MB stm32 系统 控制
1
安全风险的实质是什么、主动免疫的计算架构、如何构建构建可信安全管理中心支持下的主动免疫三重防护框架、中国可信计算3.0突破高等级安全防护核心技术、等保2.0可信防护体系框架、云计算可信安全架构、物联网可信安全架构、工业控制系统可信安全架构等
1
现代直流伺服控制技术及其系统设计目录代序言前言第1章绪论1直流伺服控制技术的发展2现代直流PWM伺服驱动技术的发展2.1国内外发展概况2.2直流PWM伺服驱动装置的工作原理和特点2.3功率控制元件的应用及控制电路集成化2.4PWM系统发展中待研究的问题3现代伺服控制技术展望第2章不可逆直流PWM系统1无制动状态的不可逆PWM系统1.1电流连续时PWM系统控制特性分析1.2电流断续时PWM系统控制特性分析2带制动回路的不可逆PWM系统第3章可逆直流PWM系统1双极模式可逆PWM系统1.1T型双极模式PWM控制原理1.2H型双极模式PWM控制原理1.3双极模式PWM控制特性分析2单极模式可逆PWM系统2.1H型单极模式同频可逆PWM控制2.2H型单极模式倍频可逆PWM控制3受限单极模式可逆PWM系统3.1受限单极模式同频可逆PWM控制系统3.2工作特性的定量分析3.3计算机辅助分析3.4受限单极模式倍频可逆PWM控制4控制方案的对比第4章PWM功率转换电路设计1PWM功率转换用GTR1.1开关特性1.2GTR的功率损耗及PWM功率转换电路对其特性的要求1.3GTR存储时间对PWM系统的影响2GTR的损坏和保护2.1GTR的耐压与损坏2.2GTR的二次击穿和安全工作区2.3GTR暂态保护3达林顿复合型功率模块的应用3.1复合型达林顿模块的电路结构3.2达林顿模块作为开关使用3.3达林顿模块并行驱动3.4达林顿模块的应用4缓冲器设计和负载线整形4.1缓冲器的必要性4.2负载线分析4.3在PWM系统中的缓冲器设计举例第5章PWM系统控制电路1脉宽调制器的一般特性及电路1.1脉宽调制器的一般特性1.2恒频波形发生器1.3脉宽调制器2保护型脉宽调制及脉冲分配电路2.1双门限延迟比较的V/W电路2.2二极管电桥反馈式窗口V/W电路2.3具有阻容延迟的PWM变换电路2.4脉冲分配逻辑延时电路3保护电路3.1电流保护型式与特点3.2保护电流的实时取样和霍尔效应电流检测装置设计3.3欠电压、过电压保护3.4瞬时停电保护3.5保护电路举例4基极驱动电路4.1基极恒流驱动4.2基极电流自适应驱动电路4.3自保护型基极驱动电路4.4典型基极驱动电路5控制电路集成化、模块化5.1一种新型SG1731型PWM集成电路5.2晶体管驱动模块简介5.3应用举例第6章PWM系统工程设计中的有关问题1功率转换电路供电电源的设计问题1.1泵升电压对功率转换电路及供电电源的影响1.2PWM系统中的反馈能量1.3反馈能量的存储及其耗散2PWM系统电流波形系数与电动机的有效出力3PWM开关频率的选择4电枢回路附加电感的设计原则5浪涌电流和电压抑制5.1合闸浪涌电流的抑制5.2浪涌电压吸收第7章PWM系统电磁兼容性设计1电磁干扰模型分析和干扰传递1.1干扰源1.2敏感单元1.3干扰传递方式2抑制或消除干扰的方法2.1PWM功率转换电路中GTR开关干扰源抑制2.2元器件的合理布局与布线2.3接地设计2.4屏蔽与隔离2.5滤波3PWM系统电磁兼容性设计导则3.1电源3.2电动机3.3GTR固态开关3.4开关控制器件3.5模拟电路3.6数字电路3.7微型计算机第8章现代直流伺服控制元件与
2023/7/12 3:46:22 13.04MB 直流伺服 控制 系统设计 秦继荣
1
安卓
2023/7/11 0:37:28 6KB app
1
利用图灵+讯飞语音做app语言控制端,web端为中转(接口),树莓派为控制网关。
树莓派对应硬件端。
该程序只做了简单的远程语音控制LED灯
1
反馈控制系统设计与分析,薛定宇,东北大学,电子书及源程序代码~~~
2023/7/10 18:44:10 13.57MB 反馈控制系统 薛定宇
1
本次设计以STC89C52芯片为控制核心,温度,湿度等传感器为环境信息采集源,以Web控制为辅助,来制作一个物联网空调监控系统
1
智能家居作为家庭信息化的实现方式,已经成为社会信息化发展的重要组成部分,物联网因其巨大的应用前景,将是智能家居产业发展过程中一个比较现实的突破口,对智能家居的产业发展具有重大意义。
本文基于容易实现,方便操作,贴近使用的设计理念,设计了一款智能家居控制系统,本系统采用STC89C52单片机为控制核心,并采用GSM模块、按键等多个控制源来控制家用电器,并且通过煤气感应器和红外感应器及时的获取家中的信息,来保证居家的安全性。
当发生险情时也能第一时间的通知用户方便用户做出相应的措施来缓解危情。
2023/7/8 11:51:14 2.28MB 单片机论文
1
本vi是基于labview的所做的红绿灯控制系统
2023/7/6 22:41:04 38KB labview
1
共 834 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡