本课程主要介绍视频编解码的基础知识,并详细讲解新一代视频编解码标准HEVC。
涉及到的课程内容有:数字视频格式、HEVC编码结构、帧间帧内预测、残差变换、残差变换系数量化、环路后处理、熵编码等。
2023/11/23 11:55:27 11.63MB 视频编解码 hevc 算法基础 大学课程
1
时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。
分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。
代码
2023/11/22 22:50:41 488KB 时间
1
自校正广义预测控制matlab仿真自校正GPC
2023/11/20 19:46:38 2KB 自校正GPC matlab仿真
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
一个基于pythonflask技术的web应用,对往年数据ARIMA模型处理,能提供3天,7天,15天预测数据,同时提供回看数据,登录,注册等功能
2023/11/14 12:45:09 83KB python flask flask socket
1
matlab程序,基于SVM的数据分类预测——意大利葡萄酒种类识别,里面一个.m文件,一个.mat数据集,直接可以使用。
2023/11/13 6:40:34 7KB SVM
1
提出改进非劣分类遗传算法NSGA-Ⅱ在燃煤锅炉多目标燃烧优化中的应用,优化的目标是锅炉热损失及NOx排放最小化。
首先,采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型,同时利用锅炉热态实验数据对模型进行了训练和验证,结果表明,BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。
在建立的锅炉排放特性和热损失BP神经网络模型基础上,采用非劣分类遗传算法对锅炉进行多目标优化,针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想、易早熟收敛的问题,在拥挤算子及交叉算子上进行了相应改进。
优化结果表明,改进NSGA-Ⅱ方法与BP神经网络模型结合可以对锅炉燃烧实现有效的多目标寻优、得到理想的Pareto解,是对锅炉燃烧进行多目标优化的有效工具,同改进前的NSGA-Ⅱ优化结果比较,其Pareto优化结果集分布更好、解的质量更优。
1
热传导模型及参数的决定对热防护服装的数理研宄,主要是要用数学模型描述热防护服装-空气层-皮肤系统内的热力学规律,为热防护服装的功能性设计提供理论参考.当前对于热防护服的研宄主要集中在热防护服装新型测试方法、服装热防护性能预测模型,以及对新兴材料在热防护服装上的应用等等.本文通过多层热防护服-空气层-皮肤这一系统来完整阐述热传递过程,并结合烧伤准则,给出了各级烧伤时间的预测及系统参数的初步研宄.同时,综合考虑皮肤层的热传递模型及烧伤评价模型
2023/11/12 9:10:54 2.77MB 算法
1
完整可直接运行的小波神经网络程序,有注释,很容易看懂
2023/11/12 0:24:10 3KB 小波神经网络
1
《《《0积分下载》》》系统辨识与自适应控制MATLAB仿真》共分6章。
第1~5章主要内容为:绪论、系统辨识、模型参考自适应控制、自校正控制(包括广义预测控制)、基于常规控制策略的自校正控制等,每种算法都配有MATLAB仿真程序、仿真结果以及对仿真结果的简要分析;
第6章详细介绍了基于可视化编程工具VB和Delphi的系统辨识与自适应控制的仿真技术。
2023/11/11 21:32:56 29.56MB 系统辨识 MATLAB仿真
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡