提出了一种基于非局部均值(NLM)滤波的相关激光雷达距离像去噪方法,结合滤波后的强度像和原始距离像、背景抑制(B-S)后的中值滤波和NLM滤波等图像融合方法,实现B-S和距离反常抑制。
对不同载噪比的相关激光雷达多目标仿真图像进行了去噪处理。
比较了Lee滤波等方法处理结果。
实验结果表明,采用该方法,能够满足距离像背景噪声抑制、目标上距离值正常和边缘保持三方面要求。
2017/7/2 2:34:44 5.86MB 图像处理 去噪 非局部均 相干激光
1
高分辨率遥感影像Pansharpen融合算法使用研究.pdf
2020/1/6 5:24:50 859KB 文档资料
1
高光谱图像融合算法研讨.pdf
2018/2/9 11:44:16 7.53MB 文档资料
1
在许多应用中都需要增强彩色图像的细节。
锐化蒙版(UM)是用于细节增强的最经典工具。
已经提出了许多通用的UM方法,例如,有理UM技术,三次模糊技术,自适应UM技术等。
对于彩色图像,这些算法分三个步骤:a)实施color2grey步骤;
b)基于亮度分量(LC)设计高频信息(HFI)提取方法;
c)利用HFI完成增强过程。
但是,仅使用LC的HFI可能会丢失色度分量(CC)的HFI。
提出了一种基于四元数的细节增强算法,既利用亮度又利用CC来提取彩色图像的细节。
设计该算法以解决三个任务:1)设计基于3Dvector旋转的四元数描述的彩色高频信息(CHFI)提取方法;
2)执行CHFI和灰色高频信息(GHFI)的有效融合策略;
3)设计了基于四元数的局部动态范围的测量方法,基于该方法可以确定所提出算法的增强系数。
该算法的功能优于其他许多类似的增强算法。
可以调整八个参数以控制清晰度,以产生所需的结果,从而使该算法具有实用价值。
2020/11/11 15:23:08 1.33MB Color texture; image enhancement;
1
本文采用两种改进的算法:基于HSV的小波融合算法(HSV-WT)、基于区域特征的自适应小波包融合算法(AWP)分别对多光谱LandSatTM数据与全色SPOT-5数据、TM数据与ERS-2的合成孔径雷达SAR数据进行融合.融合结果表明两种改进算法融合后的数据在保持光谱信息和提高空间细节信息两方面均得到提高.当应用两种方法对同一组数据进行处理时,AWP的功能参数优于HSV-WT.这两种算法相对传统小波算法,能克服对高频信息处理的缺陷,突破待融合数据的分辨率比值限制,实现分辨率之比非2n的数据融合.
2019/7/10 3:36:03 1.85MB 改进算法 数据融合 小波算法 HSV
1
经典leach算法,和PSO算法,有想法的同学可以融合在一起,便于对比仿真。
亲测无效
1
1、GPS融合六轴陀螺仪,解算速度,经纬度,方位角,资态。
2、无信号形态下惯性导航
2018/1/6 13:42:30 20KB 算法 c语言 开发语言 后端
1
针对自主吸尘机器人非结构化的工作环境及避障的实时性要求,提出融合了超声波传感器和红外传感器的混合视觉算法,并且基于BP神经网络的传感器信息融合技术进行了实验。
1
数据融合matlab代码自适应加权学习网络的轻量图像超分辨率王朝峰,李振和石军,“具有自适应加权学习网络的轻量图像超分辨率”,该代码基于依存关系的Python3.5PyTorch>=0.4.0麻木skimage意象matplotlibtqdm代码 gitclonegit@github.com:ChaofWang/AWSRN.git cdAWSRN抽象的近年来,深度学习已以出色的功能成功地应用于单图像超分辨率(SISR)任务。
但是,大多数基于卷积神经网络的SR模型都需要大量计算,这限制了它们在现实世界中的应用。
在这项工作中,为SISR提出了一种轻量级SR网络,称为自适应加权超分辨率网络(AWSRN),以解决此问题。
在AWSRN中设计了一种新颖的局部融合块(LFB),用于有效的残差学习,它由堆叠的自适应加权残差单元(AWRU)和局部残差融合单元(LRFU)组成。
此外,提出了一种自适应加权多尺度(AWMS)模块,以充分利用重建层中的特征。
AWMS由几个不同的尺度卷积组成,并且可以根据AWMS中针对轻量级网络的自适应权重的贡献来删除冗余尺度分
2018/6/1 12:43:36 3.95MB 系统开源
1
深层神经网络拥有更强特征表达能力的同时,也带来了优化难、训练成本高及梯度弥散等问题;参数数量的激增则导致模型过于臃肿,不利于其在挪动端及工业控制设备等算力弱、存储小的平台上的部署.针对这些问题,构建了一种融合空洞卷积和多尺度稀疏结构的轻量神经网络对图像进行特征提取,实现对带有彩色图形噪声且字符扭曲粘连严重的验证码图像的端到端识别.将包含100万张验证码图像的数据集按98:1:1的比例划分为训练集、验证集和测试集,逐批参与训练.实验结果表明,该网络在大大减少参数数量的同时,具有测试集上98.9%的识别成功率.
1
共 519 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡