植物的品种识别svm和Bp神经网络的研讨基于Matlab
2020/6/5 2:05:03 526.77MB 树叶
1
solarisSVM适合小白,零碎干货,SVM解析
2021/6/12 18:33:36 176KB solaris
1
这项工作提出了一种提取电流波形特征以识别家用电器的方法。
短时傅立叶变换(STFT)和内核PCA技术用于提取这些特征。
一旦定义了特征,分类器k-最近邻(kNN)、支持向量机(SVM)、线性判别分析(LDA)、随机森林(RF)和极限学习机(ELM)被用于设备(??或组合)电器)标识。
PS:ELM算法摘自http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm并顺应本工作
2016/3/9 1:10:18 6.61MB matlab
1
读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。
如果在实现过程中有任何疑问,可以随时在MATLAB中文论坛与作者交流,作者每天在线,有问必答。
该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
图书目录第1章P神经网络的数据分类--语音特征信号分类第2章BP神经网络的非线性系统建模--非线性函数拟合第3章遗传算法优化BP神经网络--非线性函数拟合第4章神经网络遗传算法函数极值寻优--非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计--公司财务预警建模第6章PID神经元网络解耦控制算法--多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN的数据预测--基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆--数字识别第10章离散Hopfield神经网络的分类--高校科研能力评价第11章连续Hopfield神经网络的优化--旅行商问题优化计算第12章SVM的数据分类预测--意大利葡萄酒种类识别第13章SVM的参数优化--如何更好的提升分类器的功能第14章SVM的回归预测分析--上证指数开盘指数预测第15章SVM的信息粒化时序回归预测--上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用--患者癌症发病预测第17章SOM神经网络的数据分类--柴油机故障诊断第18章Elman神经网络的数据预测--电力负荷预测模型研究第19章概率神经网络的分类预测--基于PNN的变压器故障诊断第20章神经网络变量筛选--基于BP的神经网络变量筛选第21章LVQ神经网络的分类--乳腺肿瘤诊断第22章LVQ神经网络的预测--人脸朝向识别第23章小波神经网络的时间序列预测--短时交通流量预测第24章模糊神经网络的预测算法--嘉陵江水质评价第25章广义神经网络的聚类算法--网络入侵聚类第26章粒子群优化算法的寻优算法--非线性函数极值寻优第27章遗传算法优化计算--建模自变量降维第28章基于灰色神经网络的预测算法研究--订单需求预测第29章基于Kohonen网络的聚类算法--网络入侵聚类第30章神经网络GUI的实现--基于GUI的神经网络拟合、模式识别、聚类
2021/6/17 23:08:54 61.64MB matlab
1
极度有用的LS—SVM的工具箱,一包在手,技术到手
2020/3/5 17:21:40 112KB SVM
1
一般的支持向量机(SVM)只能够用作二分类,而本次上传的代码是一个四分类的支持向量机(SVM)算法实现,代码的关键部分都会有注释,适合刚入门的小白看。
本代码还用到了libsvm这个工具箱,需要读者本人配置,配置方法较为简单,本人百度就能实现。
数据可以用本人的也可以用压缩包里面的。
2019/7/25 20:18:57 5KB matlab SVM 多分类
1
运用matlab实现蜂群SVM,粒子群SVM,遗传算法SVM,数据包含有公共数据集,公共图像数据集,图像特征提取用了词袋,保证可用(公共图像数据集太大,删除了)
2018/7/12 22:13:04 36.25MB matlan ABC_SV
1
包含python代码与数据集,可直接运转。
一组鸢尾花数据集,这组数据集有100个样本点,用SVM来预测这些鸢尾花数据集中哪些是山鸢尾花,哪些是非山鸢尾花。
2021/9/10 7:16:15 3KB SVM
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡