这是一个锁相环仿真的simulink模子,上传提供给需要仿真PLL的人做参考
2023/4/21 0:40:23 45KB 硬件仿真
1
这是使用ModelSim仿真SDRAM时序操作的残缺代码,其中另有PLL模块以及FIFO模块的仿真源码。
2023/4/15 20:13:01 4.18MB SDRAM Modelsim 仿真 FPGA
1
光伏并网系统,matlab/simulink编写,2010版本以上,可以运转。
涉及内容有:光伏,并网,boost,逆变,SVPWM,MPPT,滤波,PLL
2023/3/12 18:56:20 144KB 光伏并网 boost SVPWM MPPT
1
摘要:超声波测距是一种典型的非接触测量方式,应用非常广泛。
本文提出了一种基于STM32单片机的高精度超声波测距方案。
与传统单片机相比,STM32的主频和定时器的频率可以通过PLL倍频高达72MHz,高分辨率的定时器为高精度的测量提供了保证。
超声波的发射使用定时器的PWM功能来驱动,回波信号的接收使用定时器的输入捕获功能,开始测距时,定时器的开启将同时启动PWM和输入捕获,完全消除了启动发射和启动计时之间的偏差,提高了测量精度。
为使回波信号趋于稳定,设计了时间增益补偿电路(TGC),在等待回波的过程中随着时间的推移需要将放大器的增益值不断增大,通过实验获取不同距离需要设置的增益值,对应不同时间需要设置数字电位器的增量,并将该参数固化在单片机的FALSH中,在测距过程中,根据时间查询电位器增量表改变电位器阻值,实现回波信号的时间补偿,提高了测量的精度。
为了在减小盲区的同时而不减小测量范围,设计了双比较器整形电路分别处理近、远距离的回波信号,近距离比较器可以有效屏蔽超声波衍射信号从而减小了测量盲区。
传统的峰值检测方法大多通过硬件电路实现,设计较复杂,稳定性差。
本文通过软件算法对回波信号进行峰值时间检测。
不只简化了电路,降低了成本,而且提高了系统的稳定度。
经研究表明,该系统测量精度达到了lmm,盲区低至3cm,量程可达500cm。
本系统在近距离测试时,系统的精度较理想,可作为停车时的倒车雷达使用,也可以用于液面检测(油箱液位),还可以用于自动门感应,机器人视觉识别等。
如果多使用几个测距仪,将这些集成一个大系统,那么整个大系统可用于定位避障。
2023/3/12 2:11:29 7.86MB STM32单片机 超声波测距 双比较器
1
锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。
它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。
锁相环主要由相位比较器(PC)、压控振荡器(VCO)。
低通滤波器三部分组成,如图1所示。
  压控振荡器的输出Uo接至相位比较器的一个输入端,其输出频率的高低由低通滤波器上建立起来的平均电压Ud大小决定。
施加于相位比较器另一个输入端的外部输入信号Ui与来自压控振荡器的输出信号Uo相比较,比较结果产生的误差输出电压UΨ正比于Ui和Uo两个信号的相位差,经过低通滤波器滤除高频分量后,得到一个平均值电压Ud。
这个平均值电压Ud朝着减小VCO输
2023/3/8 17:16:08 105KB
1
STM32F207串口例子串口1,2为DMA发送与接收串口3,4没有使用DMA。
工程为KEILC。
4个串口发送接收都在硬件板是测试过的。
需要留意的是我的硬件板的晶振是25M,如果你的晶振不一样,需要在system_stm32f2xx.c文件中修改#ifndefRMII_MODE/*Systemclockfrequencyconfiguredfor120MHz****************************//*PLL_VCO=(HSE_VALUEorHSI_VALUE/PLL_M)*PLL_N*/#definePLL_M25
2023/2/22 22:26:24 364KB STM32F207 串口1 DMA源码 PRINTF
1
测量频率采用等精度法,信号通过高速比较器直接接入FPGA。
本题难点是测量时间间隔,相对误差10^-2,时间间隔范围0.1US-100MS。
因而时间的分辨率要达到1ns,也就是时钟频率要跑到1Ghz,大多数FPGA是不可能完成。
本方案采用状态法测量时间间隔,采用PLL倍频出来的250Mhz,等效成1Ghz的采样频率,满足精度要求,工程代码完整分FPGA工程和stm32工程,转换公式注释明了。
2023/2/15 11:02:12 16.31MB 代码
1
锁相环PLL的工作原理及完好的verilog程序代码。
分享一下!
2023/2/14 10:35:33 2.87MB verilog pll
1
PLL_ADF4360-8之C言语驱动代码
2023/2/12 18:15:16 885B 射频
1
WM8978是一个低功耗、高质量的立体声多媒体数字信号编译码器。
它主要应用于便携式应用,比如数码照相机、可携式数码摄像机。
它结合了立体声差分麦克风的前置放大与扬声器、耳机和差分、立体声线输出的驱动,减少了应用时必需的外部组件,比如不需要单独的麦克风或者耳机的放大器。
高级的片上数字信号处理功能,包含一个5路均衡功能,一个用于ADC和麦克风或者线路输入之间的混合信号的电平自动控制功能,一个纯粹的录音或者重放的数字限幅功能。
另外在ADC的线路上提供了一个数字滤波的功能,可以更好的应用滤波,比如“减少风噪声”。
WM8978可以被应用为一个主机或者一个从机。
基于共同的参考时钟频率,比如12MHz和13MHz,内部的PLL可以为编译码器提供所有需要的音频时钟。
WM8978工作在模拟电源电压2.5V到3.3V,虽然它的数字核心部分为了节省电能可以把工作电压下降到1.62V。
如果需要增大输出功率,扬声器和OUT3/4线输出可以在5V电源运行。
芯片的个别部分也可以通过软件进行断电控制。
2023/2/8 10:57:21 2.99MB 数据手册 wm8978 中文
1
共 61 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡