MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2023/12/18 13:27:37 91.48MB 深度学习
1
MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2023/12/8 3:11:21 2KB 深度学习
1
crowdcount-mcnn-master复现的预训练模型,话说从dropbox下载文件还真是费劲.我的复现过程出现的问题汇总在https://blog.csdn.net/jiruijing123/article/details/88750427
2023/11/25 1:57:33 931KB 预训练模型
1
为了说明训练过程,本示例将训练SegNet,一种用于图像语义分割的卷积神经网络(CNN)。
用于语义分割的其他类型网络包括全卷积网络(FCN)和U-Net。
以下所示训练过程也可应用于这些网络。
本示例使用来自剑桥大学的CamVid数据集展开训练。
此数据集是包含驾驶时所获得的街道级视图的图像集合。
该数据集为32种语义类提供了像素级标签,包括车辆、行人和道路。
本示例创建了SegNet网络,其权重从VGG-16网络初始化。
要获取VGG-16,请安装NeuralNetworkToolbox?ModelforVGG-16Network:安装完成后,运行以下代码以验证是否安装正确。
此外,请下载预训练版SegN
2023/11/15 8:25:03 1.06MB 使用MATLAB深度学习进行语义分割
1
yoloV4网络下的COCO数据集预训练权重文件,正确率很高,可以作为迁移学习的先导权重文件,可以省去很多的训练事件。
2023/11/11 6:08:11 246.73MB 人工智能 YoloV4 预训练权重文件 .h文件
1
局部光场融合||Tensorflow实现可用于稀疏输入图像的新颖视图合成。
*1,*1,2,3,4,1,21加州大学伯克利分校,2FyusionInc,3德州农工大学,4加州大学圣地亚哥分校*表示相等的贡献在SIGGRAPH2019中目录安装TL;DR:设置并渲染演示场景首先安装docker()和nvidia-docker()。
在基本目录中运行此命令,以下载预训练的检查点,下载Docker映像,并运行代码以在示例输入数据集上生成MPI和渲染的输出视频:bashdownload_data.shsudodoc
1
facenet提供了预训练模型,基于MS-Celeb-1M人脸库训练,百度网盘下载
2023/10/31 3:07:37 49B facenet modal Inception ResNet
1
resnet预训练模型有resnet18.caffemodel,resnet50.caffemodel,resnet101.caffemodel,resnet152.caffemodel
2023/10/25 19:38:26 508.41MB resnet caffemodel
1
Word2Bits-量化词向量Word2Bits扩展了Word2Vec算法,以输出高质量的量化词向量,该向量的存储量比常规词向量少8到16倍。
在阅读详细信息。
什么是量化词向量?量化词向量是词向量,其中每个参数是2^bitlevel值之一。
例如,“国王”的1位量化矢量看起来像0.333333340.333333340.33333334-0.33333334-0.33333334-0.333333340.333333340.33333334-0.333333340.333333340.33333334...由于参数限制为2^bitlevel值之一,因此每个参数仅使用bitlevel位来表示;
这大大减少了词向量占用的存储量。
下载预训练的单词向量所有单词向量均为Glove/Fasttext格式(格式详细信息)。
使用gzip压缩文件。
每个参数位
2023/10/13 10:57:49 1.2MB C++
1
深度学习AlexNet模型预训练参数,.npy格式,深度学习入门可尝试练习
2023/10/10 9:38:03 215.78MB alexnet CNN
1
共 72 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡