通过Matlab/simulink对前轮转向的小车运动学模型和差速转向的小车运动学模型建立,并搭建纯跟踪控制器验证路径跟踪控制。
2024/6/6 21:05:26 159KB 数据建模 自动驾驶
1
【开源】多功能步进电机直流电机控制器开发板(原理图+PCB+示例程序+元件清单)
2024/6/6 16:45:23 1.31MB 步进电机驱动 直流电机控制器 AD PCB
1
一Kubernetes概述二核心组件/附件三集群部署四入门命令五配置清单使用六POD配置清单七控制器配置清单八Service配置清单九ingress控制器十POD存储卷十一配置信息容器化
2024/6/5 17:28:19 6.18MB Kubernetes Kubernetes笔记 文档 教程
1
上一个有乱触的情况。
现在这个没事了。
基于STM32战舰的带触摸屏的作息时间控制器,这个把触摸屏乱触改良了。
这个库也支持添加图片和音乐播放器,不过程序需要自己去写
2024/6/5 14:22:12 14.8MB 战舰
1
近年来,嵌入式技术、网络传输技术以及图像处理技术都得到了不断发展和提高,以嵌入式技术为基础设计的视频采集与处理系统越来越受到人们的关注。
相对于以往以计算机为核心的视频采集与处理系统,嵌入式视频采集与处理系统因为其体积较小、功耗较低以及相对较低的成本价格等特点,基于嵌入式技术的视频采集与处理系统应用的领域也越来越广泛,比如公共交通、移动终端、工业产品检测、视频监控等。
对于嵌入式视频采集与传输系统来说,就是通过嵌入式处理器,在外扩展图像传感器、传输模块等一些相关的外设,实现图像数据的采集、显示、处理、存储与传输等功能。
根据目前图像采集系统的发展趋势,本文设计了一种以ARM芯片为核心的嵌入式图像采集系统。
系统采用ST(意法半导体)公司生产的基于Cortex-M4架构的ARM芯片STM32F407作为微控制器,完成数据的处理功能;
搭配OV(OmniVision)公司生产的CMOS图像传感器OV2640作为图像采集模块,其像素为200万,保证了图像质量;
数据传输模块选择用以太网进行传输,可将采集到的视频发送至PC机进行显示和存储;
同时设计了一个SD卡模块来存储图像数据,图像主要以BMP和JPEG
2024/6/4 16:22:15 5.39MB 于STM32 视频采集 传输
1
本装置从使用简单、调整方便、功能完备角度出发,实现了波形由正常到失真的变化以及总谐波失真的测量。
装置由外界信号源、微控制器模块、采集测量模块、晶体管放大器模块、外接示波器组成。
运行时外接信号源频率1kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压ui供模块测量,通过单片机控制输出无失真以及顶部失真、底部失真、双向失真、交越失真4种失真波形,并且计算各种波形的总谐波失真。
2024/6/3 6:47:52 1MB 单片机
1
基于FPGA的VerilogHDL-LPM_ROM控制器,完整工程,配合相关文档,对学习如何设计LPM_ROM控制器非常有帮助。
2024/6/3 2:12:15 306KB FPGA Verilog ROM控制器
1
Nagios是一个监视系统运行状态和网络信息的监视系统。
Nagios能监视所指定的本地或远程主机以及服务,同时提供异常通知功能等Nagios可运行在Linux/Unix平台之上,同时提供一个可选的基于浏览器的WEB界面以方便系统管理人员查看网络状态,各种系统问题,以及日志等等。
Nagios的主要功能特点:-监视网络服务(SMTP,POP3,HTTP,NNTP,PING等)-监视主机资源(进程,磁盘等)-简单的插件设计可以轻松扩展Nagios的监视功能-服务等监视的并发处理-错误通知功能(通过email,pager,或其他用户自定义方法)-可指定自定义的事件处理控制器-可选的基于浏览器的WEB界面以方便系统管理人员查看网络状态,各种系统问题,以及日志等等-可以通过手机查看系统监控信息
2024/6/2 15:06:47 2.49MB nagios
1
有关模糊PID控制器的matlab详细设计步骤
2024/6/2 10:53:19 475KB 模糊 PID控制器 MATLAB
1
在带材加工和卷曲过程中,对带材的张力控制关系到带材的品质和质量。
本文设计了一种电液比例恒张力控制系统,以可编程控制器(PLC)作为主控器,在分析常规PID控制器的基础上,采用了模糊PID控制算法对系统控制,实现PID控制参数的在线自整定。
经过实验研究,模糊PID控制系统比常规PID控制系统相应快,调整能力强,鲁棒性好,有效的改善了控制效果。
2024/5/31 13:50:38 468KB 张力控制, 模糊
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡