使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式
2023/12/3 16:12:48 7KB SVM,NLP
1
matlab用于求解规划问题的工具包推荐把这个工具整合到matlab中去,这个工具是私人的,不过大家都可以免费下载使用。
下载后,只要在matlab中添加路径就可以使用这工具箱。
正在吸引我的是,这个工具箱建立了一种新的数据类型,使所有规划问题都整合在一起。
举例如下:已知非线性整数规划为:Maxz=x1^2+x2^2+3*x3^2+4*x4^2+2*x5^2-8*x1-2*x2-3*x3-x4-2*x5s.t.0<=xi<=99(i=1,2,...,5)x1+x2+x3+x4+x5<=400x1+2*x2+2*x3+x4+6*x5<=8002*x1+x2+6*x3<=800x3+x4+5*x5<=200在matlab中输入x=intvar(1,5);
f=[11342]*(x'.^2)-[82312]*x';F=set(0<=x<=99);F=F+set([11111]*x'<=400)+set([12216]*x'<=800)+set(2*x(1)+x(2)+6*x(3)<=800);F=F+set(x(3)+x(4)+5*x(5)<=200);solvesdp(F,-f)double(f)80199double(x)539999990intvar(m,n):生成整数型变量;
sdpvar(m,n):生产变量;
solvesdp(F,f):求解最优解(最小值),其中F为约束条件(用set连接),f为目标函数double:显示求解的答案intvar,sdpvar,生成的变量可以像矩阵一样使用,如例题显示。
2023/11/19 17:45:48 789KB matlab 规划 线性规划 整数规划
1
等高线追踪基于TIN绘制等高线直接利用原始观测数据,避免了DTM内插的精度损失,因而等高线精度较高;
对高程注记点附近的较短封闭等高线也能绘制;
绘制的等高线分布在采样区域内而并不要求采样区域有规则四边形边界。
而同一高程的等高线只穿过一个三角形最多一次,因而程序设计也较简单。
但是,由于TIN的存贮结构不同,等高线的具体跟踪算法跟踪也有所不同。
基于三角形搜索的等高线绘制算法如下:对于记录了三角形表的TIN,按记录的三角形顺序搜索。
其基本过程如下:1)对给定的等高线高程h,与所有网点高程zi(i=1,2,?,n),进行比较,若zi=h,则将zi加上(或减)一个微小正数ε>0(如ε=10-4),以使程序设计简单而又不影响等高线的精度。
2)设立三角形标志数组,其初始值为零,每一元素与一个三角形对应,凡处理过的三角形将标志置为1,以后不再处理,直至等高线高程改变。
3)按顺序判断每一个三角形的三边中的两条边是否有等高线穿过。
若三角形一边的两端点为P1(x1,y1,z1),P2(x2,y2,z2)则(z1-h)(z2-h)0表明该边无等高线点。
直至搜索到等高线与网边的第一个交点,称该点为搜索起点,也是当前三角形的等高线进入边、线性内插该点的平面坐标(x,y):
2023/11/9 22:08:01 1.42MB 等高线 AutoCAD C#
1
信道化MATLAB仿真clcclearall;closeall;fs=300e6;%samplerate(Hz)f0=[050123158195235260270]*1e6;%centerfrequencyofLFMsignal(Hz)A=[00023500];%amplitudeofsignalsD=6;%downsamplerate%C=8;%numberofchannel%--------------------------generateLFMsignal--------------------------t=1/fs:1/fs:10240/fs;x1=A(1)*exp(1i*2*pi*f0(1)*t);x2=A(2)*exp(1i*2*pi*f0(2)*t);x3=A(3)*exp(1i*2*pi*f0(3)*t);x4=A(4)*exp(1i*2*pi*f0(4)*t);
2023/10/5 16:43:41 7KB 信道化
1
PCIE(PCIExpress)采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
AX7325开发板中的FPGAXC7K325TFFG900单通道通信速率可高达5Gbit带宽,可配置成X1、X2、X4、X8模式。
该例程中通过利用XILINX的XDMAIP来实现PCIE的发送和接收速度测试。
2023/9/23 12:54:17 2.23MB PCIe
1
设S=(x1,x2,…,xn)是有序集,且x1<x2<…<xn,已知键值和区间的存取概率分布为(a0,b1,a1,b2,…,bn,an),其中ai表示相应区间的搜索概率,bi表示相应键值的搜索概率。
在所有表示有序集的二叉树中找出一棵具有最小平均路长的二叉搜索树
2023/9/13 20:20:52 2KB 二分搜索树 动态规划 C语言
1
PCIE-X1卡PCIE-X16卡+PCIEX1X16卡槽ADALTIUMPCB封装库文件,PcbLib后缀文件,包括PCIEX1X16卡接口封装+PCIEX1X16卡槽的AltiumDesigner封装文件,共4个,已在项目中验证使用,可作为你产品设计的参考。
1
目录1.规格型号说明11-1.伺服驱动器型号说明11-2.驱动器与电机的组合21-3.驱动器与电机的尺寸31-4.技术规格52.外形与接插件92-1.接插件外形与清单92-2.电源插头X1、X2和编码器插头X6112-3.控制信号接口X5122-3-1.位置控制模式控制信号接线图122-3-2.速度控制模式控制信号接线图132-3-3.控制信号接线详解143.接线图263-1.电缆规格与最大长度263-2.I/O控制信号插头,编码器插头和外部反馈装置插头263-3.接线指示263-3-1.连接到电源接线端子的电缆263-3-2.连接到控制信号接口X5293-3-3.连接到编码器信号接口X6344.参数364-1.参数概略364-2.参数详解394-3.电子齿轮功能565.时序图576.保护功能607.操作说明658.增益调整728-1.调整方法与框图728-2.实时自动增益调整738-3.常规自动增益调整768-4.适配增益调整788-5.自动调整功能的禁止808-6.增益自动设置功能818-6.手动调整增益829.控制框图93
2023/9/11 20:48:47 2.02MB 马达
1
源代码:#include#include#include#include#definePI3.1415926/*定义常量*/#defineUP0x4800/*上移↑键:修改时间*/#defineDOWN0x5000/*下移↓键:修改时间*/#defineESC0x11b/*ESC键:退出系统*/#defineTAB0xf09/*TAB键:移动光标*//*函数声明*/intkeyhandle(int,int);/*键盘按键判断,并调用相关函数处理*/inttimeupchange(int);/*处理上移按键*/inttimedownchange(int);/*处理下移按键*/intdigithour(double);/*将double型的小时数转换成int型*/intdigitmin(double);/*将double型的分钟数转换成int型*/intdigitsec(double);/*将double型的秒钟数转换成int型*/voiddigitclock(int,int,int);/*在指定位置显示时钟或分钟或秒钟数*/voiddrawcursor(int);/*绘制一个光标*/voidclearcursor(int);/*消除前一个光标*/voidclockhandle();/*时钟处理*/doubleh,m,s;/*全局变量:小时,分,秒*/doublex,x1,x2,y,y1,y2;/*全局变量:坐标值*/structtimet[1];/*定义一个time结构类型的数组*/main(){intdriver,mode=0,i,j;driver=DETECT;/*自动检测显示设备*/initgraph(&driver,&mode,"");/*初始化图形系统*/setlinestyle(0,0,3);/*设置当前画线宽度和类型:设置三点宽实线*/setbkcolor(0);/*用调色板设置当前背景颜色*/setcolor(9);/*设置当前画线颜色*/line(82,430,558,430);line(70,62,70,418);line(82,50,558,50);line(570,62,570,418);line(70,62,570,62);line(76,56,297,56);line(340,56,564,56);/*画主体框架的边直线*//*arc(intx,inty,intstangle,intendangle,intradius)*/arc(82,62,90,180,12);arc(558,62,0,90,12);setlinestyle(0,0,3);arc(82,418,180,279,12);setlinestyle(0,0,3);arc(558,418,270,360,12);/*画主体框架的边角弧线*/setcolor(15);outtextxy(300,53,"CLOCK");/*显示标题*/setcolor(7);rectangle(342,72,560,360);/*画一个矩形,作为时钟的框架*/setwritemode(0);/*规定画线的方式。
mode=0,则表示画线时将所画位置的原来信息覆盖*/setcolor(15);outtextxy(433,75,"CLOCK");/*时钟的标题*/setcolor(7);line(392,310,510,310);line(392,330,510,330);arc(392,320,90,270,10);arc(510,320,270,90,10);/*绘制电子动画时钟下的数字时钟的边框架*//*绘制数字时钟的时分秒的分隔符*/setcolor(5);for(i=431;i<=470;i+=39)for(j=317;j<=324;j+=7){setlinestyle(0,0,3);circle(i,j,1);/*以(i,y)为圆心,1为半径画圆*/}setcolor(15);line(424,315,424,325);/*在运行电子时钟前先画一个光标*//*绘制表示小时的圆点*/for(i=0,m=0,h=0;i<=11;i++,h++){x=100*sin(
2023/8/25 8:11:27 142KB c语言实现电子时钟 课程设计
1
本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下刚开始学习tf时,我们从简单的地方开始。
卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。
神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。
数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。
输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。
借用极客学院的图表示如下:其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3.用简单的公式表示如下:在训练过程中,我们将
2023/8/12 13:08:11 96KB fl flow mnist
1
共 59 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡