用DDraw实现射击游戏阐发文档要点一:画图自动切割IDirectDrawSurface7::BltFast()方式中不自动切割成果,即当画图元素逾越窗口之外时不会自动切割,DDraw遴选自动漠视不画,组成一旦逾越窗口,画图元素会忽然磨灭。
处置这一下场的方式是手动切割,代码如下://自动切割 RECTscRect; //寄存之后窗口大小地域 ZeroMemory(&scRect,sizeof(scRect)); GetWindowRect(GetActiveWindow(),&scRect); //提防图片左上角逾越窗口左上角 if(xscRect.right?scRect.right:x; y=y>scRect.bottom?scRect.bottom:y; m_rect.right=x+m_rect.right-m_rect.left>scRect.right?scRect.right-x+m_rect.left:m_rect.right; m_rect.bottom=y+m_rect.bottom-m_rect.top>scRect.bottom?scRect.bottom-y+m_rect.top:m_rect.bottom;惟独将上述代码加在CGraphic::BltBBuffer()中的m_bRect=m_rect;前就可。
要点二:配景的滚轴实现 画配景能够分为如下三种情景: 情景一:配景图片与窗口等高 情景二:配景图片高度小于窗口高度 情景三:配景图片高度大于窗口高度上述教学图与代码相对于应地看,有助于约莫知道。
另外,要点一实现之后,由于已经能够自动切割,画配景能够用另外方式。
要点三:精灵图的实普通游戏中,如RPG游戏中的人物图、射击类游戏的飞机、爆炸等,叫做精灵图。
精灵图实际上是将齐全帧的图片放在一个文件中,游戏时靠一个RECT来抑制画图像文件中的哪一部份,进而抑制游戏展现哪一帧图,惟独抑制好RECT的位置就可。
如下图:抑制RECT的四个角的坐标的挪动,有如下代码:if(m_timeEnd–m_timeStart>100) //惟独到了100ms之后才画图 {m_ImageID++; if(m_ImageID-m_beginID>=num) { m_ImageID=m_beginID; //末了一帧的下一帧是第一帧 } m_timeStart=timeGetTime(); } intid=m_ImageID++; SetRect(&m_rect,41*id,0,41*(id+1),41); //飞机精灵图大小是41×41 m_pGraph->BltBBuffer(m_pImageBuffer,true,m_Pos.x,m_Pos.y,m_rect);如许就实现为了精敏捷画的下场。
要点四:拿STL举行枪弹的实现枪弹的实现能够使用STL中的vector,当按下开战键时收回一颗枪弹,就往vector中削减一个结点;
当枪弹飞出窗口或者击中敌机时,再将结点从vector中删除了。
每一帧游戏画面中枪弹翱翔时惟独将vector中的齐全枪弹举行处置、绘画就可。
参考代码如下:1.削减枪弹if(g_ctrlDown) //当ctrl键按下时开炮! { m_BulletEnd=m_Gtime->GetTime(); if((m_BulletEnd-m_BulletStart)*1000>120) //假如络续按着开战键不放,这里抑制不会收回太多枪弹 { m_BulletStart=m_BulletEnd; MBULLETtmpBullet; tmpBullet.pos.x=m_SPos.x-1; //记实开战时的枪弹位置 tmpBullet.pos.y=m_SPos.y-26; tmpBullet.speed=5; //该枪弹的翱翔速率 m_BulletList.push_back(tmpBullet); //将枪弹削减到vector中 } } 2.删除了枪弹vector::iteratoritei; //vector迭代器 for(itei=m_BulletList.begin();itei!=m_BulletList.end();itei++) //遍历齐全枪弹{m_BulletList.erase(itei); //删除了这个枪弹itei=m_BulletList.begin(); //删除了一个结点后,为防止侵蚀下次就重新查验if(m_BulletList.empty()) break; //若删除了结点后枪弹vector已经空则跳出轮回} 3.枪弹遍历处置vector::iteratoritei; //vector迭代器 for(itei=m_BulletList.begin();itei!=m_BulletList.end();itei++) //遍历齐全枪弹{itei->pos.y-=itei->speed; //枪弹翱翔}要点五:碰撞检测使用WindowsAPI函数RectInRegion:vector::iteratoritei; //vector迭代器for(itei=m_EnimyList.begin();itei!=m_EnimyList.end();itei++) //遍历齐全敌机{HRGNhrgn=::CreateRectRgn(m_player->pos.x,m_player->pos.y,m_player->pos.x+41,m_player->pos.y+41); //患上到飞机Region,图宽41高41 SetRect(&m_rect,itej->getPosition().x,itej->getPosition().y,itej->getPosition().x+50,itej->getPosition().y+50) //患上到敌机rect,敌机宽50高50 if(RectInRegion(hrgn,&m_rect)) //两机相撞 { ……………………. //碰撞之后的种种处置 }}让碰撞愈加准确:使用WindowsAPI函数PtInRegion()以及CreatePolygonRgn(),选取配角飞机的三个关键点的坐标放在POINT数组中,并将其作为参数代入CreatePolygonRgn()中天生HRGN,在枪弹与配角飞机做碰撞检测时惟独分辨枪弹的中间点能否在这个Region中就可(PtInRegion())。
留意:CreateRectRgn()与CreatePolygonRgn()等建树Region的函数会占用体系资源,由于游戏的主渲染函数Render()是络续实施的,如许会组成资源糜掷,于是在用完之后未必要释放:DeleteObject(region)要点六:敌机直线翱翔末了想这个下场的时候,感应很好实现,脑子里马上想到以及了。
其实如许实现有下场,当尽头以及尽头的连线斜率不是1或者-1时就会涌现意想不到的责任了,飞机并无直接飞向尽头,而因此斜率相对于值为1的路途飞已经往,再水平或者垂直飞向尽头。
处置这个下场有多少个方式,其中有一个方式是行使盘算机图形学上的Bresenhem直线算法。
该算法用于盘算机画平面上的直线,算法如下:|m|abs(deltaY))//轨迹斜率0)//1 { if(m_bFirstCalculate) { m_Delta=2*abs(deltaX)-abs(deltaY);//d0=2×dx-dy m_bFirstCalculate=false; } //依据轨迹斜率分辨能否要挪动X坐标 if(m_Delta>0)//m_iTempo)break;}//endofwhile(*pStr)
2023/5/1 0:27:02 2.18MB DDraw
1
代码是经由matalb实现的对于delta机械人行为的圆周仿真。
2023/4/24 21:44:10 2KB delta matlab 仿真
1
functiony=pocs(s,delta_est,factor)POCS开源代码
2023/4/23 2:37:58 3KB 超分辨率重建 MATLAB
1
Delta并联机械人逆解法度圭表标准,自己写的,正逆解残缺能够比力上。
2023/4/20 11:34:52 2KB MATLAB
1
该程式为自己自编的matlab程式。
其首要的成果是依据输入delta机械人的牢靠座半径、行为座半径、自动轴半径以及从动轴半径,自动描划出机械人行为中间的部份轨迹。
以帮手对于delta机械人方案前期的作业空间评估。
其中的编程逻辑首要分为两部份:1.设定一个XOZ平面举行三角函数转换盘算。
2.矩阵转置,列出另外的方程式。
3.松散求解,描出以色调分辨高度的平面玄色图形。
2023/4/19 22:12:36 1KB matlab Delta
1
MAU螺旋桨图谱根号Bp-delta,用于螺旋桨计划
2023/2/14 23:26:24 125KB MAU桨图谱
1
包括如下100例有关的VHDL描述文件,但解压后只有94例,其他部分错误第1例?带控制端口的加法器袁媛(1)第2例?无控制端口的加法器袁媛(4)第3例?乘法器袁媛(6)第4例?比较器袁媛(8)第5例?二路选择器袁媛(11)第6例?寄存器袁媛(13)第7例?移位寄存器袁媛(16)第8例?综合单元库袁媛(22)第9例?七值逻辑与基本数据类型袁媛(29)第10例?函数袁媛(32)第11例?七值逻辑线或分辨函数袁媛(35)第12例?转换函数袁媛(38)第13例?左移函数袁媛(40)第14例?七值逻辑程序包袁媛(42)第15例?四输入多路器陈东瑛(51)第16例?目标选择器吴清平(57)第17例?奇偶校验器陈东瑛(61)第18例?映射单元库及其使用举例陈东瑛(69)第19例?循环边界常数化测试陈东瑛(75)第20例?保护保留字袁媛(77)第21例?进程死锁刘沁楠(79)第22例?振荡与死锁袁媛(81)第23例?振荡电路刁岚松(83)第24例?分辨信号与分辨函数袁媛(87)第25例?信号驱动源刘沁楠(92)第26例?属性TRANSACTION和分辨信号陈东瑛(96)第27例?块保护及属性EVENT,STABLE陈东瑛(101)第28例?方式参数属性的测试刘沁楠(104)第29例?进程和并发语句刁岚松(107)第30例?信号发送与接收刁岚松(111)第31例?中断处理优先机制建模吴清平(113)第32例?过程限定刘沁楠(116)第33例?整数比较器及其测试刘沁楠(119)第34例?数据总线的读写刁岚松(129)第35例?基于总线的数据通道李春(134)第36例?基于多路器的数据通道李杰(148)第37例?四值逻辑函数袁媛(152)第38例?四值逻辑向量按位或运算刁岚松(156)第39例?生成语句描述规则结构袁媛(159)第40例?带类属的译码器描述袁媛(164)第41例?带类属的测试平台袁媛(169)第42例?行为与结构的混合描述袁媛(171)第43例?四位移位寄存器.刘沁楠(174)第44例?寄存/计数器袁媛(185)第45例?顺序过程调用陈东瑛(189)第46例?VHDL中generic缺省值的使用王作建(191)第47例?无输入元件的模拟王作建(196)第48例?测试激励向量的编写袁媛(201)第49例?delta延迟例释吴清平(206)第50例?惯性延迟分析吴清平(210)第51例?传输延迟驱动优先陈东瑛(213)第52例?多倍(次)分频器刁岚松(216)第53例?三位计数器与测试平台刘沁楠(220)第54例?分秒计数显示器的行为描述陈东瑛(226)第55例?地址计数器陈东瑛(234)第56例?指令预读计数器吴清平(242)第57例?加、减、乘指令的译码和操作吴清平(245)第58例?2-4译码器结构描述刘沁楠(248)第59例?2-4译码器行为描述吴清平(255)第60例?转换函数在元件例示中的应用王作建(258)第61例?基于同一基类型的两分辨类型的赋值相容问题王作建(261)第62例?最大公约数的计算刁岚松(266)第63例?最大公约数七段显示器编码吴清平(269)第64例?交通灯控制器吴清平(272)第65例?空调系统有限状态自动机刁岚松(276)第66例?FIR滤波器谢巍(280)第67例?五阶椭圆滤波器刘沁楠(290)第68例?闹钟系统的控制器张东晓(302)第69例?闹钟系统的译码器陈东瑛(311)第70例?闹钟系统的移位寄存器陈东瑛(315)第71例?闹钟系统的闹钟寄存器和时间计数器陈东瑛(317)第72例?闹钟系统的显示驱动器陈东瑛(322)第73例?闹钟系统的分频器陈东瑛(325)第74例?闹钟系统的整体组装张东晓(327)第75例?存储器李春(333)第76例?电机转速控制器张俭锋(337)第77例?神经元计算机袁媛(343)第78例?Am2901四位微处理器的ALU输入韩曙(347)第79例?Am2901四位微处理器的ALU韩曙(353)第80例?Am2901四位微处理器的RAM韩曙(359)第81例?Am2901四位微处理器的寄存器韩曙(363)第82例?Am2901四位微处理器的输出与移位韩曙(365)第83例?Am2910四位微程序控制器中的多
2021/11/7 11:50:07 312KB VHDL 详解
1
并联机械人Delta_RoboticSolidWorks三维模型,通用格式和SolidWorks格式
2018/9/26 9:36:22 23.48MB Delta SolidWorks 并联机器人 3D
1
国外某大学的delta并联机器人工作空间绘图程序matlab源码的改进版。
我对原始版本的图像显示做了一些修改:隐藏网格线、用单色显示、用光照增强立体感、旋转时坐标轴比例固定不变。
这个程序比本人做的3-PSS工作空间绘图程序效果好很多,原理还在研究中。


genworkspace为主程序文件
2021/9/24 11:41:40 2KB 并联机器人 工作空间 matlab 三维图
1
Spark-delta所需求的包
2019/5/14 23:29:42 1.64MB DeltaLake
1
共 31 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡