图像修复基于matlab的cdd技能修复代码附有修复图片和详细过程
2017/8/3 11:49:43 1.03MB cdd 图像修复
1
数字图像修复技术论文。
本文首先阐述数字图像修复技术的基本原理、起源和目前国内外的研究状况,并对当前存在的一些典型的数字图像修复算法进行引见、分析,指出其优缺点和适用范围。
对某些算法作重点论述,并在分析其算法后提出适当的建议改进。
在此基础上,结合毕业设计的要求,研究Criminis基于样本的图像修复算法思想,并给出实验结果,分析其优缺点及产生原因,并作出进一步改进。
在文章的结尾,将会对之前提到的算法进行归类总结,依据现有各种算法其自身的优缺点或是其在适用范围上的局限性等,总结当代数字图像修复技术的特点和发展趋势,提出该技术在今后的进一步研究发展中需要注意的几个问题。
2017/10/27 3:41:56 2.6MB 图像修复; Criminisi 算法
1
基本思路:微分方程求解,**用邻近的像素替换那些坏标记,使其看起来像是邻居**。
假设图像里的一个区域要修复。
算法从这个区域的边界开始,逐步地进入区域,把边界内的所有东西填充上。
它取要修复的部分周围的一个像素周围的一小片邻居。
这个像素被周围已知的像素的标准加权和替换掉。
选择权重是很重要的。
要修复的点周围像素的权重较高。
和正常边界近的,还有在边界轮廓上的像素的权重较高。
当像素被修复以后,它会通过快速匹配方法($FMM$)移动到最近的像素。
$FMM$保证那些已知像素周围的像素首先被修复,所以这个就像人工启发式的操作一样。
$OpenCV$提供了两种算法。
两者都可以通过相同的函数访问,$cv2.inpaint()$。
第一种算法基于$AlexandruTelea$于2004年发表的“基于快速行进方法的图像修复技术”。
它基于快速行进方法。
考虑图像中要修复的区域。
算法从该区域的边界开始,然后进入区域内,逐步填充边界中的所有内容。
它需要在邻近的像素周围的一个小邻域进行修复。
该像素由邻居中所有已知像素的归一化加权和代替。
选择权重是一个重要的问题。
对于靠近该点的那些像素,靠近边界的法线和位
2021/2/6 11:52:54 686B Python OpenCV
1
应用TensorFlow中的深度学习进行图像修复
2020/1/2 9:45:46 37.97MB Python开发-机器学习
1
TotalvariationandnonlocaltotalvariationmethodsforimageinpaintingwrittenbyGabery!!!!
2022/9/6 11:26:53 1.87MB image inpainting
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡