这个一个Python代码,是台湾大学李宏毅老师教授机器学习课程上举例提出的一个宝可梦Pokemon的CP值预测的模型,采用了Regression的方法。
2024/11/5 15:57:20 3KB 台大李宏毅 机器学习 Pokemo 代码
1
Kaggle-House-Prices-Advanced-Regression-Techniques原始数据集,包括train.csv,test.csv,data_description.txt
2024/9/29 3:12:17 166KB Kaggle House Prices 数据集
1
非打印版,文字可选取[目录]1.Generalities.2.TheWeakTopologyandItsMetrization.3.TheBasicTypesofEstimates.4.AsymptoticMinimaxTheoryforEstimatingaLocationParameter.5.ScaleEstimates.6.MultiparameterProblems,InParticularJointEstimationofLocationandScale.7.Regression.8.RobustCovarianceandCorrelationMatrices.9.RubustnessofDesign.10.ExactFiniteSampleResults.11.MiscellaneousTopics.References.Index.
2024/8/28 8:03:35 5.83MB Robust Statistics 统计
1
机器学习시작!!!机器学习1일차이이다!!에에문룰들룰들룰들다다다다다다다다다다다다다다다다다다다监督学习>>标签주기적으로적으(训练数据集)ex)고양이사고양이label을구별한다例)regression로투자프르그램프르그램,-휴대폰배터리측정-回归(회귀)回归(회귀)란이란:변수변수해해측측해터나터나터나터나영향영향영향영향영향영향영향영향용이용无监督学习>>Super이터를보고tensorflow기초tensorflow会话(Session)会话(Session.run)tensorflow发行人Tensor()发行人!!(Session을!!같다같같같같같같)))))시점에서는v2이고Session에서만v1용사때문에기때문에importtensorflow.compat.v1astf\ntf.disable_v2_behavi
2024/8/14 14:31:13 61.32MB JupyterNotebook
1
支持向量机源码,可在www.csie.ntu.edu.tw/~cjlin/libsvm/下载到最新版本,该版本是2013年4月更新的,3.17版。
压缩包里面有源代码和文档。
以下摘自前述网站:IntroductionLIBSVMisanintegratedsoftwareforsupportvectorclassification,(C-SVC,nu-SVC),regression(epsilon-SVR,nu-SVR)anddistributionestimation(one-classSVM).Itsupportsmulti-classclassification.Sinceversion2.8,itimplementsanSMO-typealgorithmproposedinthispaper:R.-E.Fan,P.-H.Chen,andC.-J.Lin.WorkingsetselectionusingsecondorderinformationfortrainingSVM.JournalofMachineLearningResearch6,1889-1918,2005.Youcanalsofindapseudocodethere.(howtociteLIBSVM)OurgoalistohelpusersfromotherfieldstoeasilyuseSVMasatool.LIBSVMprovidesasimpleinterfacewhereuserscaneasilylinkitwiththeirownprograms.MainfeaturesofLIBSVMincludeDifferentSVMformulationsEfficientmulti-classclassificationCrossvalidationformodelselectionProbabilityestimatesVariouskernels(includingprecomputedkernelmatrix)WeightedSVMforunbalanceddataBothC++andJavasourcesGUIdemonstratingSVMclassificationandregressionPython,R,MATLAB,Perl,Ruby,Weka,CommonLISP,CLISP,Haskell,OCaml,LabVIEW,andPHPinterfaces.C#.NETcodeandCUDAextensionisavailable.It'salsoincludedinsomedataminingenvironments:RapidMiner,PCP,andLIONsolver.Automaticmodelselectionwhichcangeneratecontourofcrossvaliationaccuracy.
2024/5/16 22:20:35 869KB 支持向量机 libsvm
1
以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或randomforest也是常以其为基础的决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序无序,nodeimpurity对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度对于回归问题,我们用方差Variance来表示无序程度,方差越大,说明数据间差异越大用于表示,由父节点划分后得到子节点,所带来的impurity的下降,即有序性的增益下面直接看个regression的例子,分类的case,差不多,还是比较简单的,由于是回归,所以impurity的定义为variancema
2024/3/22 19:16:07 137KB SparkMLlib-DecisionTree源码分析
1
这里实现了四种SVM工具箱的分类与回归算法1、工具箱:LS_SVMlabClassification_LS_SVMlab.m-多类分类Regression_LS_SVMlab.m-函数拟合2、工具箱:OSU_SVM3.00Classification_OSU_SVM.m-多类分类3、工具箱:stprtool\svmClassification_stprtool.m-多类分类4、工具箱:SVM_SteveGunnClassification_SVM_SteveGunn.m-二类分类Regression_SVM_SteveGunn.m-函数拟合
2023/12/15 17:58:15 232KB matlab
1
kaggle中的房价猜测数据集,一共三个csv文件,包括:测试集,训练集和房价真实值
2021/3/27 2:32:04 191KB kaggle
1
线性回归餐厅情感分析目录表描述线性回归机器学习模型可预测评论是肯定的还能否定的。
它以86%的准确度正确预测正确的标签。
技术领域使用以下项目创建项目:python版本:3.9.1NumPy库版本:1.20.0熊猫库版本:1.2.2数据集制作数据集后,每个功能都是代表餐厅评论中所使用单词的存在或不存在的分类特征(0、1)。
常见词(例如“the”,“a”等)未分类。
每行代表一个点(餐厅评论),每列代表其特征(评论中能否使用单词)。
除了评论是肯定的(1)还能否定的(0),每列都是除包含标签的最后一列之外的单独功能。
设置下载.py文件,training_dataset,validation_dataset和权重文件。
将它们放在单个文件或项目文件中。
运行代码将以下内容添加到类文件中:x=logistic_regression("train_d
2021/7/1 3:16:04 4.99MB Python
1
SPSS25回归方法(Regression)IBM官方阐明手册,繁体中文版。
2016/4/25 4:08:26 3.83MB SPSS
1
共 11 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡