基于MATLAB的柑桔果实分类图像朴素贝叶斯分类器NaiveBayesClassifierToClassificationImageOfCitrusFruitsWithMatlabCode
2016/2/17 1:30:37 2.36MB MATLAB
1
本书适合有志于从事数据挖掘的初学者,需求的朋友可看看第一部分数据挖掘与机器学习数学基础3第一章机器学习的统计基础3第二章探索性数据分析(EDA).11第二部分机器学习概述14第三章机器学习概述14第三部分监督学习---分类与回归16第四章KNN(k最邻近分类算法)16第五章决策树19第六章朴素贝叶斯分类29第七章Logistic回归.32第八章SVM支持向量机42第九章集成学习(EsembleLearning)43第十一章模型评估46第四部分非监督学习---聚类与关联分析50第十二章Kmeans聚类分析.50第十三章关联分析Apriori.52第十四章数据预处理之数据降维54第五部分Python数据预处理.57第十五章Python数据分析基础.57第十六章Python进行数据清洗.77第六部分数据结构与算法82第七部分SQL知识.86第八部分数据挖掘案例分析87案例一AJourneythroughTitanic597c770e.87案例二Analysisforairplane-crashes-since-190894案例三贷款预测问题98案例四KNN算法实现葡萄酒价格模型预测及交叉验证107
2015/1/23 5:02:50 4.4MB python 数据挖掘 算法
1
支持向量数据描述(SupportVectorDataDescription,SVDD)语言:MATLAB版本:V2.1-----------------------------------------------------创作不易,欢迎各位5星好评~~~如有疑问或建议,请发邮件至:iqiukp@outlook.com可提供关于该算法/代码的付费咨询和有偿编写-----------------------------------------------------主要特点1.支持单值分类和二值分类的超球体构建2.支持多种核函数(linear,gaussian,polynomial,sigmoid,laplacian)3.支持2D或3D数据的决策边界可视化4.支持基于贝叶斯超参数优化、遗传算法和粒子群算法的SVDD的参数优化5.支持加权的SVDD-----------------------------------------------------注意1.SVDDV2.1仅支持R2016b以上的MATLAB版本2.正样本和负样本对应的标签分别为1和-13.提供了多个示例文件,每个文件的开头都有对应的引见4.此代码仅供参考5.可以阅读“SVDD-V2.1使用说明.pdf”文件了解更多用法
1
第1周面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2周赌博设计:概率的基本概念,古典概型第3周每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4周啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)第5周万事皆由分布掌握:多维随机变量及其分布第6周砖家的统计学:随机变量的期望,方差与协方差第7周上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布第8周点数成金,从抽样推测规律之一:点估计与区间估计第9周点数成金,从抽样推测规律之二:参数估计第10周对或错?告别拍脑袋决策:基于正态总体的假设检验第11周扔掉正态分布:秩和检验第12周预测将来的技术:回归分析第13课抓住表象背后那只手:方差分析第14周沿着时间轴前进,预测电子商务业绩:时间序列分析简介
2020/3/20 13:28:41 204B 大数据 统计学
1
采用动量梯度下降算法训练BP网络采用贝叶斯正则化算法提高BP网络的推行能力采用“提前停止”方法提高BP网络的推行能力
2021/2/2 15:54:17 8KB bp神经网络
1
ThereisanexplosionofinterestinBayesianstatistics,primarilybecauserecentlycreatedcomputationalmethodshavefinallymadeBayesiananalysistractableandaccessibletoawideaudience.DoingBayesianDataAnalysis,ATutorialIntroductionwithRandBUGS,isforfirstyeargraduatestudentsoradvancedundergraduatesandprovidesanaccessibleapproach,asallmathematicsisexplainedintuitivelyandwithconcreteexamples.Itassumesonlyalgebraand‘rusty’calculus.Unlikeothertextbooks,thisbookbeginswiththebasics,includingessentialconceptsofprobabilityandrandomsampling.Thebookgraduallyclimbsallthewaytoadvancedhierarchicalmodelingmethodsforrealisticdata.ThetextprovidescompleteexampleswiththeRprogramminglanguageandBUGSsoftware(bothfreeware),andbeginswithbasicprogrammingexamples,workingupgraduallytocompleteprogramsforcomplexanalysesandpresentationgraphics.Thesetemplatescanbeeasilyadaptedforalargevarietyofstudentsandtheirownresearchneeds.ThetextbookbridgesthestudentsfromtheirundergraduatetrainingintomodernBayesianmethods.Accessible,includingthebasicsofessentialconceptsofprobabilityandrandomsamplingExampleswithRprogramminglanguageandBUGSsoftwareComprehensivecoverageofallscenariosaddressedbynon-bayesiantextbooks-t-tests,analysisofvariance(ANOVA)andcomparisonsinANOVA,multipleregression,andchi-square(contingencytableanalysis).CoverageofexperimentplanningRandBUGScomputerprogrammingcodeonwebsiteExerciseshaveexplicitpurposesandguidelinesforaccomplishment作者从概率统计和编程两方面入手,由浅入深地指点读者如何对实际数据进行贝叶斯分析。
全书分成三部分,第一部分为基础篇:关于参数、概率、贝叶斯法则及R软件,第二部分为二元比例推断的基本理论,第三部分为广义线性模型。
内容包括贝叶斯统计的基本理论、实验设计的有关知识、以层次模型和MCMC为代表的复杂方法等。
同时覆盖所有需要用到非贝叶斯方法的情况,其中包括:t检验,方差分析(ANOVA)和ANOVA中的多重比较法,多元线性回归,Logistic回归,序列回归和卡方(列联表)分析。
针对不同的学习目标(如R、BUGS等)列出了相应的重点章节;
整理出贝叶斯统计中某些与传统统计学可作类比的内容,方便读者快速学习。
本中提出的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。
由于并不对读者的统计或
2018/9/5 21:06:32 9.93MB 贝叶斯 Bayesian Data Analysis
1
从网站爬取口红销售数据,分析影响销售数据的重要因素以及根据销售因素建模预测其销售量。
本文先将数据进行预处理得到实验数据,然后着重分析朴素贝叶斯判别分析算法、AdaBoost算法以及随机森林算法在口红销量预测中的效果,并在随机森林算法中进行模型优化。
通过实验结果表明总评价数、价格和描述分这三个因素对销售量的影响较大,对三个算法对比分析得出随机森林算法预测错误率最低,有较好的预测效果。
2022/9/8 7:04:18 4.29MB 数据挖掘 R语言
1
讲述贝叶斯变分法在信号处理中的使用,极具参考价值!
2022/9/7 12:23:47 4.37MB Variational Bayes;Signal Processing
1
本代码是利用朴素贝叶斯算法完成的垃圾邮件分类,本代码包括代码部分和垃圾邮件及正常邮件数据集
2022/9/6 22:44:48 16KB 贝叶斯应用
1
【毕业设计】matlab贝叶斯和通用阈值软阈值图像去噪方法MATLAB程序,希望对大家有协助,仅供大家参考,希望有用.rar
2022/9/5 19:16:31 2KB 图像去噪
1
共 306 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡