基于协同过滤的电子商务推荐系统极易遭到托攻击,托攻击者注入伪造的用户模型增加或减少目标对象的推荐频率,如何检测托攻击是目前推荐系统领域的热点研究课题.分析五种类型托攻击对不同协同过滤算法产生的危害性,提出一种特征选择算法,为不同类型托攻击选取有效的检测指标.基于选择出的指标,提出两种基于监督学习的托攻击检测算法,第一种算法基于朴素贝叶斯分类;第二种算法基于k近邻分类.最后,通过实验验证了特征选择算法的有效性,及两种算法的灵敏性和特效性.
1
adaboost演示demo(基于Matlab,学习算法包括决策树、神经网络、线性回归、在线贝叶斯分类器等),动态GUI显示学习进程、vote进程等
2021/2/4 3:11:53 13KB 机器学习
1
一、机器学习的分类:监督学习(supervisedlearning):线性回归,逻辑回归,KNN,神经网络,决策树,集成学习,SVM,贝叶斯,协同过滤,LDA无监督学习(unsupervisedlearning):聚类、关联规则,PCA降维……二、机器学习中主要处理问题包括:分类,回归,聚类,降维……
2018/1/7 4:29:10 9KB 机器学习 理论总结
1
基于相关系数的加权朴素贝叶斯分类算法_张明卫,分享给大家进修~
2017/4/18 14:02:27 999KB 贝叶斯
1
【为什么学习机器学习算法?】人工智能是国家发展的战略,未来发展的必然趋势。
将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。
中国人工智能人才缺口超过500万,人才供不应求。
要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。
【课程简介】很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。
本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。
本课程选取了机器学习经典的8大模型:线性回归、逻辑回归、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维再也不用东拼西凑,一门课程真正掌握机器学习核心技术。
它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。
?《深度学习与神经网络从原理到实践》课程现已上线,这使得人工智能学习路径愈加完备,地址:https://edu.csdn.net/course/detail/29539
2018/5/3 18:47:12 3.37MB 人工智能 机器学习 算法 数学 技术 回顾
1
GeNle用户手册贝叶斯网络。
英文版,网页地点:https://support.bayesfusion.com/docs/GeNIe/
2015/3/13 1:23:58 13.09MB 贝叶斯网络
1
语音去混响不断都是会议场景、临境通信中的重要问题。
混响的存在使得语音质量、语音的可懂度大大降低,因此需要特定的算法去对存在混响的室内语音信号进行处理。
《SpeechDereverberation》本书描述了语音去混响的各种处理方法第一章:本书内容综述第二章:混响模型、评价指标第三章:基于统计模型语音去混响算法第四章:基于LPC模型语音去混响算法第五章:基于多麦克风特征值分解语音去混响算法第六章:自适应盲多通道系统辨识第七章:多通道声学系统的子代逆矩阵第八章:移动目标语音的贝叶斯单通道盲去混响第九章:不使用房间声学信息的语音去混响逆滤波第十章:用于语音和音频信号去混响的TRINICON本书适用于学生、研究者或产品开发的工作人员本书版权为作者所有。
2019/6/14 12:34:17 11.06MB
1
朴素贝叶斯估计朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。
首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
具体的,根据训练数据集,学习先验概率的极大似然估计分布以及条件概率为Xl表示第l个特征,由于特征条件独立的假设,可得条件概率的极大似然估计为根据贝叶斯定理则由上式可以得到条件概率P(Y=ck|X=x)。
贝叶斯估计用极大似然估计可能会出现所估计的概率为0的情况。
后影响到后验概率结果的计算,使分类产生偏差。
采用如下方法处理。
条件概率的贝叶斯改为
2016/5/23 2:49:33 92KB python python for循环
1
自然语言处理自然语言处理代码和正文。
nb_classifier包是朴素贝叶斯分类器的Java实现,适用于对短句进行分类。
NB_notes文件包含理论和实现的粗略概述。
2016/4/22 7:30:23 800KB Java
1
本资源是斯坦福ML公开课笔记的13-15部分。
次要内容包括混合高斯模型、混合贝叶斯模型、因子分析模型、主成分分析、奇异值分解、隐含语义索引和独立成分分析等内容。
欢迎下载
2015/6/26 19:42:55 1.33MB 机器学习 斯坦福公开课 笔记
1
共 291 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡