matlab代码,有详细解释,产生正态分布随机数据,划分训练集测试集,用Bayes分类器分类
2020/1/13 12:41:52 2KB Bayes
1
使用opencv自带的haarcascade_eye_tree_eyeglasses.xml分类器实现检测人眼,并精准地定位了瞳孔的位置。
代码很简约,易于理解。
2018/5/3 9:50:50 2.53MB opencv 人眼检测 瞳孔检测 瞳孔定位
1
模式识别中贝叶斯算法判别身高体重matlab实现1)应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,调查测试错误情况。
在分类器设计时可以调查采用不同先验概率(如0.5对0.5,0.75对0.25,0.9对0.1等)进行实验,调查对决策规则和错误率的影响。
2)应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,调查训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以调查采用不同先验概率(如0.5vs.0.5,0.75vs.0.25,0.9vs.0.1等)进行实验,调查对决策和错误率的影响。
3)自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
2016/6/25 22:06:17 669KB 模式识  matla
1
这个和我以前传的有了一点改动就是把训练模型和预测分为了2个工程了更方便了里面有readme.txt.还可以看看我前面上传那个工程的“资源描述”
2016/2/22 2:32:32 863KB 朴素贝叶斯
1
基于Hog特征+SVM分类器,利用Opencv3.0进行手写数字辨认的源代码及所需资源文件(训练图片、测试图片)
2015/8/16 17:18:33 4.52MB 手写数字识别 Opencv3.0 Hog特征
1
haarcascade_eye.xml,HaarCascade常用来做人脸检测,其实它可以检测任何工具。
OpenCV项目源码中有很多训练好的Haar分类器。
2021/10/5 23:02:50 494KB opencv
1
libsvm-支持多类别分类的svm工具箱(matlab).它扩展了matlab自带的svm分类器的功能(只能完成2分类),可配合DeepLearnToolbox运用
2016/5/18 5:34:11 2.7MB libsvm svm工具箱
1
中国科学技术大学汪增福模式识别课程课件。
第一章为绪论。
第二章引见统计模式识别中的几何方法,着重引见特征空间的概念和相关分类器的设计方法。
第三章引见统计模式识别中的概率方法,着重引见最小错误概率分类器、最小风险分类器、纽曼皮尔逊分类器和最小最大分类器以及概率密度函数的参数估计和非参数估计等。
第四章讨论典型分类器错误概率的计算问题。
第五章讨论无监督情况下的模式识别问题,着重引见几种典型的聚类算法:基于分裂的聚类方法、基于合并的聚类方法、动态聚类方法、基于核函数的聚类方法和近邻函数值聚类方法等。
第六章讨论结构模式识别问题,给出几种典型的文法规则和与之相关联的识别装置,包括有限状态自动机、下推自动机和图灵机等。
最后,在第七章对全书进行总结。
2021/11/8 11:51:08 25.28MB 中科大 汪增福 模式识别课件
1
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最初再利用期望值和修正概率做出最优决策。
  贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:  1、已知类条件概率密度参数表达式和先验概率。
  2、利用贝叶斯公式转换成后验概率。
  3、根据后验概率大小进行决策分类。
2017/1/20 23:27:27 67KB visualc++Bayesian1
1
本文设计了一种基于支持向量机(SVM)的运动目标识别算法,以对运动目标进行准确的识别和分类。
鉴于支持向量机在小样本,非线性和高维模式识别方面的优势,构造了一种基于支持向量机的分类器。
利用形状特征构成的特征向量分类样本对支持向量机进行训练和分类,结合支持向量机和二叉决策树构成多分类器。
对象特征向量用作SVM的输入,我们将使用分类器对检测到的运动对象进行分类。
实验结果表明,该算法能够准确识别和分类视频图像中的不同对象。
2021/9/4 2:30:54 299KB Object recognition support vector
1
共 265 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡