利用OpenCV开源视觉库来获取通过硬件解码的RGB图像,避免了通过调用AndroidCamera得到图像再转码为RGB格式,提高了系统的实时性。
然后对采集的图像进行高斯滤波和形态学变换。
最后对预处理后的图像进行Canny取边缘操作,利用Hough变换取得道路边缘直线组,在摄像头相对道路的偏转角度在一定范围的条件下,将边缘直线分为左右两组,之后对两组直线利用最小二乘法拟合得到两条道路边缘性,然后得到道路中心线及其位置,该信息可以通过串口\wifi\蓝牙等输出到控制器,以便控制器对小车或飞机的飞行姿态进行调整。
2025/7/18 0:31:54 1.77MB opencv 循迹
1
最简单,最基本的图像融合算法,IHS算法。
将pan图和一张多光谱图像融合。
2025/7/17 17:20:12 677B 图像处理 图像融合 IHS 算法
1
鱼眼图像的矫正,以及全景拼接
2025/7/17 14:12:48 22.84MB 鱼眼全景
1
深度学习在图像识别上的应用掌握深度学习算法掌握TensorFlow框架以及图像识别应用案例
2025/7/17 12:21:24 34.8MB 人工智能 深度学习 tensorflow
1
这是一篇基于图像处理技术的织物疵点检测研究论文,论文格式是PDF格式的,论文对于图像处理技术和疵点检测方面有很好的参考价值
2025/7/17 0:30:13 1.59MB 图像处理
1
这篇文章介绍了基于快速傅里叶变换的图像配准算法,讲得比较清楚,是图像配准方面的一篇入门文章。
2025/7/16 17:08:50 915KB fft 图像配准
1
先对第一帧图像用鼠标框选跟踪区域,双击后开始自动跟踪。
代码可以修改来处理图片序列。
2025/7/16 17:52:53 3KB Camshift Matlab
1
两种阈值分割算法,一种是ostu算法,另一种算法,对ostu算法进行改进,可以对双峰值图像分割,效果有很大改善
2025/7/16 13:19:37 174KB 阈值分割 Ostu 改进算法
1
各标定步骤实现方法1计算标靶平面与图像平面之间的映射矩阵计算标靶平面与图像平面之间的映射矩阵,计算映射矩阵时不考虑摄像机的成像模型,只是根据平面标靶坐标点和对应的图像坐标点的数据,利用最小二乘方法计算得到[[ix]].2求解摄像机参数矩阵由计算得到的标靶平面和图像平面的映射矩阵得到与摄像机内部参数相关的基本方程关系,求解方程得到摄像机内部参数,考虑镜头的畸变模型,将上述解方程获得的内部参数作为初值,进行非线性优化搜索,从而计算出所有参数的准确值[[x]].3求解左右两摄像机之间的相对位置关系设双目视觉系统左右摄像机的外部参数分别为Rl,Tl,与Rr,Tr,,即Rl,Tl表示左摄像机与世界坐标系的相对位置,Rr,Tr表示右摄像机与世界坐标系的相对位置[[xi]]。
因此,对于空间任意一点,如果在世界坐标系、左摄像机坐标系和右摄像机坐标系中的坐标分别为Xw,,Xl,Xr,则有:Xl=RlXw+Tl;Xr=RrXw+Tr.因此,两台摄像机之间的相对几何关系可以由下式表示R=RrRl-1;T=Tr-RrRl-1Tl在实际标定过程中,由标定靶对两台摄像机同时进行摄像标定,以分别获得两台摄像机的内、外参数,从而不仅可以标定出摄像机的内部参数,还可以同时标定出双目视觉系统的结构参数[xii]。
由单摄像机标定过程可以知道,标定靶每变换一个位置就可以得到一组摄像机外参数:Rr,Tr,与Rl,Tl,因此,由公式R=RrRl-1;T=Tr-RrRl-1Tl,可以得到一组结构参数R和T
2025/7/16 11:53:45 33KB opencv
1
使用拉格朗日乘子法对目标进行分离,将视频的每一帧图像分离为前景图像和背景图像
2025/7/16 1:40:33 44.83MB t1
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡