mo_3.m_lbp特征提取,fitcecoc训练svm模型,predict预测,人脸分类。
使用fitcecoc函数训练一个多分类的SVM模型,使用predict函数利用训练出的模型对测试数据进行预测,将得到的类标预测值与测试数据真实的类标进行比较,计算测试数据中被正确分类的样本所占的比例。
2025/8/4 5:45:50 3KB matlab 人脸分类 fitcecoc predict
1
一个简单的利用灰度信息做分割的svm代码,自己在研究生学习中琢磨出来的
2025/8/1 22:22:57 18KB svm image segmentation
1
这个利用行人HOG特征通过SVM分类器进行分类的代码。
程序运行环境为VS2013+OpenCV2.20。
程序内可以选择Opencv自带的行人检测算法,也可以自己训练HOG特征进行检测。
如果自己训练的话,需要在D盘建立一个文件(具体文件名程序中有)里面存在训练的正负样本,和测试样本。
具体D盘的这个文件夹在本人自愿中已上传,需要请自行下载。
2025/7/30 21:48:56 6.52MB hog svm 行人检测
1
这是pso优化的支持向量机程序,主要用于各种数据的分类
2025/7/17 17:31:26 9KB 分类
1
此数据集包含1000张图片,总共分为10类。
分别是人,沙滩,建筑,大卡车,恐龙,大象,花朵,马,山峰,食品十类。
每类100张,可用于验证机器学习中的KNN,kmeans,贝叶斯,SVM等机器学习算法。
可以为计算机性能较差的机器学习爱好者提供浅层研究的数据集。
2025/7/14 6:18:29 28.47MB 数据集 机器学习
1
我的环境是opencv2.4.13,环境是VS2013,经过训练xml文件实现人脸sad,smile,surprise表情识别,直接打开就可以使用。
2025/7/7 14:07:50 11.06MB 人脸识别代码 SVM BP opencv
1
Python编写的SVM算法,SVM算法的实现,适合直接使用,开放源代码
1

颜色分类leetcode哈里斯角Kps和描述符提取这是纯numpy的Hog特征提取特征描述符特征描述符是图像或图像块的表示,它通过提取有用信息并丢弃无关信息来简化图像。
通常,特征描述符将大小为宽x高x3(通道)的图像转换为长度为n的特征向量/数组。
在HOG特征描述符的情况下,输入图像的大小为64x128x3,输出特征向量的长度为3780。
请记住,可以针对其他大小计算HOG描述符,但在这篇文章中,我坚持使用原始论文中提供的数字,以便您可以通过一个具体示例轻松理解该概念。
这一切听起来不错,但什么是“有用的”,什么是“无关紧要的”?要定义“有用”,我们需要知道它“有用”是为了什么?显然,特征向量对于查看图像是没有用的。
但是,它对于图像识别和对象检测等任务非常有用。
当将这些算法产生的特征向量输入到支持向量机(SVM)等图像分类算法时,会产生良好的结果。
但是,什么样的“特征”对分类任务有用?让我们用一个例子来讨论这一点。
假设我们要构建一个对象检测器来检测衬衫和外套的纽扣。
纽扣是圆形的(在图像中可能看起来是椭圆形的)并
2025/6/19 13:18:46 459KB
1
简要的matlab基于svm分类的小程序,有三个例子可以作为参考
2025/6/15 18:34:11 1.93MB matlab svm
1
支持向量机二分类图像,matlab代码实现
2025/6/9 6:31:06 1KB svm
1
共 468 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡