里面包含随机森林的matlab实现代码,并且有简单的训练数据集和测试数据集
2025/6/9 12:34:44 102KB 随机森林 matlab实现
1
基于Python3.7实现的BP神经网络算法,里面包括源程序、训练数据、测试数据、算法运行步骤和结果。
2025/5/30 14:41:35 386KB BP神经网络 源程序 python
1
印刷数字,总和10000张,7000训练,3000测试,还可以
2025/5/26 2:19:30 4.79MB 神经网络 数字识别
1
贝叶斯应用:网络评论预测食品安全案例测试集及源码:数据为2019CCF大数据与计算智能大赛提供的10000条对O2O店铺的评论文本训练数据,分为与食品安全有关和与食品安全无关两个类别。
需要根据训练集构造文本分类模型,预测2000条测试集中的评论是否与食品安全有关。
2025/5/22 1:26:25 591KB 测试数据集
1
研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.
1
本资源为自己人工标记的微博语料,分为消极pos.txt,积极neg.txt各60000条,适用于机器学习情感分析,训练数据原数据
1
NER-LSTM-CRF一个易于使用的命名实体识别(NER)工具包,在张量流中实现了LSTM+[CNN]+CRF模型。
该项目短期内不再维护,PyTorch版本::1.型号Bi-LSTM/Bi-GRU+[CNN]+CRF,其中CNN层针对英文,捕获字符特征,通过参数use_char_feature控制self.nil_vars.add(self.feature_weight_dict[feature_name].name)。
2.用法2.1数据准备训练数据处理成下列形式,特征之间用制表符(或空格)替换,每行共n列,1至n-1列为特征,最后一列为labe
2025/4/1 16:17:21 389KB tensorflow crf lstm deeplearning
1
一个完成的sparkmllib协同过滤推荐算法ALS完整实例程序,基于sparkyarn-client模式运行,另外,包括训练数据。
2025/3/23 12:32:53 866KB spark mllib ALS pyspark
1
头条新闻文本分类数据集,包括11个类别,近50万条数据,文本内容为新闻标题+提取的关键词,分为训练数据和验证数据两个文件
1
手撸bp神经网络实现手写数字识别,仅使用numpy完成,适合深度学习入门玩家,60000个训练数据训练时间半分钟,测试集正确率96%+
2025/3/2 9:29:47 13.04MB 深度学习 神经网络
1
共 121 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡