这是一个matlab对梯度下降的实现,模拟的是x^2+y^2最小值的取得
1
AI,ML,gradientdescent,paper,matlab
2024/1/4 5:49:49 1.32MB gradient descent
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
程序利用pythonnumpy和matplotlib库实现了简单的梯度下降算法并对其进行可视化。
程序通过简单的可视化过程解释了梯度下降的原理,供大家学习参考。
注:并不是反向传播的实现,而是对梯度下降原理的解释,请根据需要自行参考。
1
机器学习的优化程序库,用Python实现了梯度下降、LBFGS、rmsprop、adadelta等算法。
2023/11/5 1:38:16 97KB python
1
最速下降迭代法又叫梯度下降迭代法,是从一已知点出发,依照某种规则,求出相继点,取代原先的点,然后重复以上过程,得到点序列,以使其趋于最优解的迭代方法
2023/10/13 15:47:12 927B 图像处理方法
1
使用多项式拟合一个周期内、加入噪声的正弦曲线。
语言:MATLAB求解方式:由于自己写的梯度下降函数收敛太慢,因此调用MATLAB梯度下降优化函数;
后期用共轭梯度方法求解,收敛较快。
代码都在里面,但是比较乱。
2023/10/6 0:39:15 57KB 机器学习 回归 梯度下降 共轭梯度
1
用动量梯度下降算法训练BP网络使用的主要函数如下:NEWFF——生成一个新的前向神经网络TRAIN——对BP神经网络进行训练SIM——对BP神经网络进行仿真
2023/10/4 2:54:19 890B matlab bp 动量梯度下降
1
抽象信道估计对于具有混合预编码的毫米波(mmWave)大规模MIMO是具有挑战性的,因为射频(RF)链的数量远小于天线的数量。
传统的基于压缩感测的信道估计方案由于信道角度量化而遭受严重的分辨率损失。
为了提高信道估计精度,本文提出了一种基于迭代重测(IR)的超分辨率信道估计方案。
通过梯度下降法优化目标函数,所提出的方案可以迭代地将估计的到达/离开角度(AoAs/AoD)移向最优解,并最终实现超分辨率信道估计。
在优化中,权重参数用于控制稀疏度和数据拟合误差之间的权衡。
另外,开发基于奇异值分解(SVD)的预处理以降低所提出的方案的计算复杂度。
仿真结果验证了该方案比传统解决方案更好的性能。
2023/10/1 15:37:31 108KB 信道估计 massive mimo
1
Gorgonia是一个有助于在Go中促进机器学习的图书馆。
轻松编写和评估涉及多维数组的数学方程式。
如果听起来像或,那是因为想法很相似。
具体来说,该库是像Theano这样的低级库,但具有更高的目标(如Tensorflow)。
Gorgonia:可以执行自动区分可以执行符号区分可以执行梯度下降优化可以进行数值稳定提供许多便利功能来帮助创建神经网络相当快(与Theano和Tensorflow的速度相比)支持CUDA/GPGPU计算(尚不支持OpenCL,发送拉取请求)将支持分布式计算目标Gorgonia的主要目标是成为一个高性能的基于机器学习/图形计算的库,可以跨多台机器进行扩展。
它应该将Go(简单的编译和部署过程)的吸引力带给ML世界。
目前距离那里还有很长的路要走,但是婴儿台阶已经在那里。
Gorgonia的次要目标是提供一个探索非标准深度学习和神经网络相关事物的平台。
这包括诸如新希伯来语学习,切角算法,进化算法之类的东西。
为什么要使用G草?使用Gorgonia的主要原因是让开发人员感到舒适。
如果您正在广泛使用Go堆栈,现在就可以在已
2023/9/25 4:07:11 79.98MB go golang machine-learning deep-neural-networks
1
共 42 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡