该代码可用于进行最小二乘支持向量机的训练数据,分类,有demo数据,可直接运行
2023/7/17 4:36:46 218KB LS-SVM
1
BP神经网络适用于大样本数据的预测,至于小样本还有灰色理论、最小二乘支持向量机、广义回归神经网络、灰色神经网络,不同的数据需要根据其本身特点选择不同的预测方法。
在很多次实验之后,我比较钟情于BP神经网络和组合预测,组合预测是大趋势,客观上有道理,主观上有更大的操作可能性。
下面给出广义回归神经网络(包含交叉验证过程的GRNN)用于小样本量预测的代码,包括BP神经网络预测结果的对比。
2021/7/14 15:13:28 6KB 神经网络
1
首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。
在UCI标准数据集上进行的仿真实验表明,该算法可无效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。
2020/7/14 17:04:21 256KB LS-SVM
1
首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。
在UCI标准数据集上进行的仿真实验表明,该算法可无效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。
2016/6/20 2:21:45 256KB LS-SVM
1
粒子群优化最小二乘支持向量机的预测程序,数据随意互换,可以运行。
2020/10/4 8:44:01 9KB 粒子群 LSSVM
1
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。
将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDDCUP99数据集进行仿真测试。
结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。
2021/7/18 2:35:40 549KB 论文研究
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡