为实现对双陷波超宽带(UWB)天线的精准神经网络建模,提出了一种利用改进的果蝇算法(FOA)优化广义回归神经网络(GRNN)的建模方法。
该方法通过扩大果蝇搜索范围,在味道判定公式中引入调整项来实现果蝇算法的改进,并用改进后的果蝇算法优化GRNN的光滑因子。
这样可以避免果蝇算法陷入局部最优,提高模型预测精度。
将该方法用于双陷波超宽带天线模型的建立中,并对天线的S11参数和电压驻波比VVSWR参数进行预测。
结果表明,相比于FOA-GRNN建模方法和GRNN建模方法,S11参数的最大相对误差分别减小了91.08%和99.14%;VVSWR参数的最大相对误差分别减小了98.36%和99.18%,使超宽带天线建模精度得到提高,验证了该方法的可行性。
1
作为一种新兴的群体智能算法,果蝇优化算法(FOA)因其简单有效而在诸多领域得到成功应用.分析FOA的搜索原理和优缺点,围绕目前的改进和相关应用进行综述.重点讨论FOA改进策略,包括改进搜索半径,改进候选解的生成机制、多种群策略等,以及FOA在复杂函数优化、组合优化和参数优化等方面的应用.最后给出FOA在算法改进和实际应用方面研究的新思路.
2024/3/23 9:50:10 677KB 优化算法 果蝇算法 综述 人工智能
1
果蝇参数寻优最小二乘支持向量机FOA-LSSVM的完整程序,自己写的
2023/8/5 4:52:11 6KB foa lssvm 果蝇 matlab
1
内部包括FOA源码,m函数以及测试函数的封装M函数,将文件保存在同一目录,运转FOA.M即可,可以更改测试函数的m程序,对不同函数进行测试。
2018/6/10 20:08:58 3KB FOA 果蝇 优化算法 源程序
1
果蝇算法在广义回归神经网络上的应用,MATLAB算法实例,内有正文,简单可用。
2016/2/16 23:27:18 5KB foa grnn 果蝇 果蝇算法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡