数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
DeepMoji模型的pyTorch实现:用于分析情绪,情感,讽刺等的最先进的深度学习模型
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
使用训练好的模型进行物体识别,对于人、车的识别成功率极高,亲测好用!
2024/7/17 9:08:02 20.39MB opencv 深度学习
1
Web的动手Python深度学习这是由Packt发布的AnubhavSingh和SayakPaul编写的“的代码库。
集成神经网络架构以使用Flask,Django和TensorFlow构建智能Web应用这本书是关于什么的?有效地使用深度学习技术可以帮助您开发智能Web应用程序。
在本书中,您将介绍用于使用Python在Web开发中实施深度学习的最新工具和技术实践。
从机器学习的基础知识开始,您将专注于DL和神经网络的基础知识,包括常见的变体,例如卷积神经网络(CNN)。
您将学习如何使用不同标准Web技术堆栈的前端将它们集成到网站中。
然后,本书通过为自定义模型创建RESTfulAPI,帮助您获得使用Python库(例如Django和Flask)开发支持深度学习的Web应用程序的实践经验。
稍后,您将探索如何为GoogleCloud和AmazonWebServices(AWS)上基于深度学习的Web部署设置云环境。
本书涵盖了以下令人兴奋的功能:探索深度学习模型并在浏览器中实现使用Django和Flask设计基于Web的智能客户端使用不同的基于Py
2024/6/19 18:14:16 44.25MB flask aws django deep-learning
1
深度学习(DeepLearning)是机器学习(MachineLearning)中近年来备受重视的一支,深度学习根源于类神经网络(ArtificialNeuralNetwork)模型,但今日深度学习的技术和它的前身已截然不同,目前最好的语音识别和影像辨识系统都是以深度学习技术来完成,你可能在很多不同的场合听过各种用深度学习做出的惊人应用(例如:最近红遍大街小巷的AlphaGo),听完以后觉得心痒痒的,想要赶快使用这项强大的技术,却不知要从何下手学习,可以学习一下这个资料。
可以毫不犹豫的说,这个资料是我看过最系统,也最通俗易懂的关于深度学习的文章。
它是由台大教授李宏毅讲解一天搞懂深度学习讲课的PPT,PPT主要包含四部分:什么是深度学习、深度学习的各种小技巧、有记忆力的深度学习模型、深度学习的应用和展望。
OutlineLectureI:IntroductionofDeepLearningLecturell:TipsforTrainingDeepNeuralNetworkLecturelll:ariantsofneuralNetworkLecturev:NextWaveLectureIntroductionofDeeplearningOutlineoflecturentroductionofDeepLearningLet'sstartwithgeneralmachinelearningWhyDeep"HelloWorldforDeepLearningMachineLearningLookingforafunctionSpeechrecognitionHowareyouImagerecognition=“Cat"Playinggo5-5″(nextmoveDialogueSystemHello(whattheusersaid)(systemresponseImageRecognition:FrameworkcatAsetofModefunctioncat)=“money"dosnakeImageRecognition:FrameworkcatAsetofModelf(41)="cat"f(=“moneyfunctionBetter)=“dog"f2(nakeGoodnessoffunctionfSupervisedLearningTrainingDatamonkey”“cat"“dogImageRecognition:FrameworkcatModelTrainingTestinAsetofunctioncatStepGoodnessofPickthe"Best"FunctionUsingfunctionfStepStep3TrainingDatamonkey”“cat"“dogThreestepsfordeeplearningStepStepStep3:pickdefineasetgoodnessofthebestoffunctionfunctionfunctionDeepLearningissosimple3DCTENCENTCO
2024/4/13 10:23:53 10.52MB 深度学习
1
Kaggle在9月30日开启的一个新的比赛,举办者是巴西最大的汽车与住房保险公司之一:PortoSeguro。
该比赛要求参赛者根据汽车保单持有人的数据建立机器学习模型,分析该持有人是否会在次年提出索赔。
这里的文档是比赛所用到的数据,数据均已经处理
2024/2/26 5:02:51 72.2MB kaggle 机器学习 Porto_Seguro
1
强大的深度学习机器学习模型画图模板,机器之心等公众号强烈推荐
2024/2/23 1:32:55 3.86MB 深度学习 机器学习 模型结构画图
1
生成式对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。
2024/2/17 5:39:41 4KB python 实现 代码 gan
1
共 53 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡