Android平台上实现的基于HOG特征的人体检测,使用Android-OpenCV2.4,可以打开图片检测、可以拍照检测、可以用摄像头实时检测。
2023/6/8 18:15:32 14.08MB Android 人体检测 HOG PeopleDetection
1
SafeInCloud密码管理器可让您将登录名,密码和其他私人信息安全地保存在加密的数据库中。
您可以通过自己的云帐户将数据与其他手机,平板电脑,Mac或PC同步。
没有订阅,没有月租费!您只需购买一次SafeInCloud,即可在所有Android设备上使用它,而无需支付任何额外费用。
主要特征◆易于使用◆材质设计◆黑色主题◆强加密(256位高级加密标准)◆云同步(GoogleDrive,Dropbox,OneDrive,Yandex磁盘,NAS,ownCloud,WebDAV)◆使用指纹登录(三星设备和Android6.0设备)◆AndroidWear应用程序◆密码强
2023/6/8 12:37:28 7.13MB SafeInCloud Pro
1
我的世界描述将Minecraft统计信息发送到InfluxDB,以由Grafana实例显示。
统计资料特征塞子蹦极绳索海绵在线玩家/最大玩家XXX平均玩家pingXXX玩家国家XXX播放器语言环境XXX播放器协议版本XXTPS(每秒点数)XX新玩家XX每个世界的玩家,块,实体,图块实体XX每台服务器的播放器X伪造modX编译中从此处安装gradle:://gradle.org/install运行gradleshadow在目标平台(Sponge,Bukki
2023/6/8 6:29:19 36KB plugin minecraft statistics sponge
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
脉搏波的数据以及特征提取,提取到最高点最低点,周期。
可以看下。
2023/6/7 6:28:38 388KB 脉搏波 数据 特征提取
1
这是北京大学计算机系数字图像处理的实习题目。
在这个项目中,我们收获了很多。
把整个分类、特征提取、论文阅读等等都经历了。
这是我们组三个人共同的结果。
一. 项目综述本实验项目实现了基于内容的图像分类系统,系统共分为三大模块:特征提取部分和分类器训练与测试,以及界面展示。
在特征提取模块采用了HSV、CIE-LAB、RGB颜色特征,小波变换及灰度共生矩阵的纹理特征,基于canny算子不变矩的形状特征;
分类器我们选择了SVM、?对于不同特征的处理,我们采取了前期加权融合。
最后还有一个对各个特征分类结果的投票决策系统,但投票系统还没有用于最后结果的提交。
界面展示使用VisualC++6.0平台。
如果遇到任何问题,或者想转载,可以到我的主页留言:http://blog.sina.com.cn/gusui,或者直接给我来邮件:ouyangj0@gmail.com谢谢:)
1
Hog特征提取,详细代码,输出的是特征大数组.
2023/6/6 12:40:38 16.42MB Hog 源码
1
通过伪布尔函数多项式优化算法(QPBO)的特征匹配和通过对偶分解(DD)算法的特征匹配对比
2023/6/6 7:57:55 198KB QPBO DD
1
一、课题题目基于MATLAB小波变换的图像融合系统二、课题背景介绍数字图像融合是一项最新发展起来的应用,对于数字图像处理和数字图像分析起着非常重要的重要。
虽然现阶段,对于图像处理和分析,PS和抠图软件发挥着某种作用,为很多人所认同和使用。
可以通过简单快捷的鼠标操作进行图像旋转、抠图等。
但由于实际是手工操作,一般显得单一,且误差较大。
因此,非常迫切地希望找到另外一种行得通的方式成为必然。
该项设计主要将两幅三幅或者多幅的数字图像融合。
这些图像由于使用不同的设备拍摄而凸显的不一样的细节重点。
一经该系统融合后就可以凸显这幅图像的优点,也可以凸显另一幅图像的优点。
再者考虑到不相同模式的图像传感器的成像原理不一样。
所以工作波长也就不一样。
所以图像不同,那么它们包含的信息就不同。
经过小波变换的融合处理后,合成图像则可以更多方面更加具体地表达所感兴趣的对象。
基于这一特征,数学矩阵库wavelettransform的图像融合技术,已经大范围地应用于地图勘测信息处理、兵营管理系统、立体卫星地图、计算机视觉等领域中。
1
该数据集共3个类别,178个样本,每个样本13个特征,还不够50字节的吗?
2023/6/5 17:15:47 6KB 数据集
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡