本文件是关于PSO粒子群算法优化RBF神经网络的MATLAB源程序。
2024/12/20 3:47:06 5KB PSO算法 RBF神经网络
1
简单易读的SVM负简单易读的SVM负荷预测实验,并包含PSO、改进PSO等多种方法简单易读的SVM负荷预测实验,并包含PSO、改进PSO等多种方法简单易读的SVM负荷预测实验,并包含PSO、改进PSO等多种方法荷预测实验,并包含PSO、改进PSO等多种方法
2024/12/12 15:30:05 713KB svm load predict
1
将otsu图像分割算法与粒子群优化算法结合,加快最佳阈值的寻找
2024/11/29 11:17:11 82KB 粒子群 pso 最大类间方差 图像分割
1
Matlabpso优化bp神经网络的程序-pso优化bp神经网络的程序.rarpso优化bp神经网络的程序
2024/11/26 8:41:15 2KB matlab
1
粒子群(PSO)优化的极限学学习机(ELM),用粒子群优化算法优化的极限学习机,可用于数据的回归和分类,实测比单纯的极限学习机精度高的多。
2024/9/26 13:02:24 71KB PSOELM ELM PSO 粒子群算法
1
现有的LSSVM工具箱,自带PSO优化,参数无需调整,Matlab编写的人工蜂群算法代码,含详细注释和测试函数,简短易懂,执行顺畅。
可用于解决无约束优化问题。
2024/8/11 7:33:10 119KB pso
1
粒子群优化SVM的两个参数,利用数据做预测,数据代码都在压缩包里,可以直接运行。
2024/6/19 22:25:46 3KB PSO SVM
1
主要是粒子群算法优化BP神经网络算法,注释写得很清楚,希望对你们有帮助
2024/5/17 9:35:46 4.75MB 粒子群 BP神经网络
1
自己写的PSO优化的LSSVM代码,用于对电力负荷的时间序列进行预测,含有原始数据序列。
2024/4/16 2:34:35 2.02MB LSSVM PSO 电力负荷预测
1
为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡