计算机组成原理上机报告,用Verilog语言实现多功能运算器ALU的设计实验,仿真波形并书写实验报告。
编程环境:VivadoHSL,设计语言:VerilogHDL。
文档排版:LaTeX。
内附实现代码,仿真波形截图,完整文档TeX源文件和学校Logo等,可参考与修改,请勿传播。
2024/8/6 17:53:47 2.33MB Verilog FPGA
1
一、设计目标设计目的:设计一个含有36条指令的MIPS单周期处理器,并能将指令准确的执行并烧写到试验箱上来验证设计初衷1、理解MIPS指令结构,理解MIPS指令集中常用指令的功能和编码,学会对这些指令进行归纳分类。
2、了解熟悉MIPS体系中的处理器结构3、熟悉并掌握单周期处理器CPU的原理和设计4、进一步加强Verilog语言进行电路设计的能力二、实验设备1、装有xilinxISE的计算机一台2、LS-CPU-EXB-002教学系统实验箱一台三、实验任务1.、学习MIPS指令集,深入理解常用指令的功能和编码,并进行归纳确定处理器各部件的控制码,比如使用何种ALU运算,是否写寄存器堆等。
2、单周期CPU是指一条指令的所有操作在一个时钟周期内执行完。
设计中所有寄存器和存储器都是异步读同步写的,即读出数据不需要时钟控制,但写入数据需时钟控制。
故单周期CPU的运作即:在一个时钟周期内,根据PC值从指令ROM中读出相应的指令,将指令译码后从寄存器堆中读出需要的操作数,送往ALU模块,ALU模块运算得到结果。
如果是store指令,则ALU运算结果为数据存储的地址,就向数据RAM发出写请求,在下一个时钟上升沿真正写入到数据存储器。
如果是load指令,则ALU运算结果为数据存储的地址,根据该值从数据存RAM中读出数据,送往寄存器堆根据目的寄存器发出写请求,在下一个时钟上升沿真正写入到寄存器堆中。
如果非load/store操作,若有写寄存器堆的操作,则直接将ALU运算结果送往寄存器堆根据目的寄存器发出写请求,在下一个时钟上升沿真正写入到寄存器堆中。
如果是分支跳转指令,则是需要将结果写入到pc寄存器中的。
2024/7/22 14:06:56 2.55MB 计算机组成原 龙芯中科
1
微机原理课程大作业,大家可以参考。
由多个v文件组成,包括了ALU、控制器、存储器、各种寄存器、多路选择器、符号扩展器、流水线、冒险、前传都有。
并且各文件的接口很清晰。
1
本资源是用Verilog语言书写的32位ARM的ALU设计,FPGA实现。
2024/6/28 3:12:44 248KB 32位ARM ALU FPGA Verilog
1
计算机组成原理实验。
用quartus2设计的alu的组成图
2024/6/23 17:07:42 112KB alu
1
组成原理实验设计,MIPS32位CPU中ALU的实现。
2024/5/22 3:51:35 351KB MIPS ALU 组成原理实验
1
计算机组成原理实验报告一:运算器实验1. 实验目的与要求:实验目的:(1)掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
(2)掌握简单运算器的数据传输通道。
(3)验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。
(4)能够按给定数据,完成实验指定的算术/逻辑运算。
实验要求:完成实验接线和所有练习题操作。
2024/3/22 13:03:21 54KB 计组 实验报告
1
题目设计一个ALU运算器,该部件包括五个输入端A、B、C、S1、S0和两个输出端F、R。
实现功能如下所示输入端S1 输入端S0 功能0 0 实现R=A+B,如果溢出则F=1,否则F=00 1 实现R=A-B,如果溢出则F=1,否则F=01 0 测试A=0,如果A=0,且C=0,则F=0,否则F=11 1 测试A=B,如果A=B,且C=0,则F=0,否则F=1设计思路根据上表的描述,可以定义真值表,根据真值表将S1S0四种情况下分别画出相应的F和R的AB关于C的卡诺图,由此可以分别推算出F和R的逻辑表达式,根据此表达式便可以画出对应的数字逻辑电路。
2024/3/4 12:16:44 93KB 硬件课程设计 仿真软件 报告
1
中央处理器(CPU)中的控制器部分不包含()。
(1)A.程序计数器(PC)B.指令寄存器(IR)C.算逻运算部件(ALU)D.指令译码器●以下关于GPU的叙述中,错误的是()。
(2)A.GPU是CPU的替代产品B.GPU目前大量用在比特币的计算方面C.GPU采用单指令流多数据流计算架构D.GPU擅长进行大规模并发计算
2024/1/30 16:57:42 293KB 信息系统管理 2018年上半年
1
组成原理课程设计之指令系统及ALU设计
2023/12/9 23:06:10 353KB 组成课设
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡