官网上下载的dlib-19.7,关于人脸信息或者人脸特征点识别。
2024/12/27 11:11:41 13.41MB dlib
1
本文将介绍一种基于深度学习和稀疏表达的人脸识别算法。
首先,利用深度学习框架(VGGFace)提取人脸特征;
其次,利用PCA对提取的特征进行降维;
最后,利用稀疏表达分类实现特征匹配。
我采用CMC曲线评价在AR数据库上的识别性能。
最后我还提供了整个过程的code。
2024/11/21 0:28:51 41.39MB 深度学习 稀疏表达SRC
1
人脸识别中的关键一步,人脸检测,单独release出来的可执行程序。
小巧灵活,可检测图片、视频、摄像头录入的视频流中的人脸。
文件中已包含需要的动态链接库和opencv自带的人脸特征,点击即可运行。
供大家学习!
2024/10/6 0:12:13 23.39MB 人脸检测 opencv310 VS2015
1
程序基于opencv实现,适用于AAM等算法的前期标记工作,标记结果输出为asf文件。
2024/8/21 12:43:02 1011KB 特征点  人脸标记 AAM opencv
1
基于PCA人脸识别,首先对训练人脸库进行的某个人脸特征提取;
根据提取的特征,在测试人脸库中检索出训练人脸库的人脸。
2024/8/11 11:39:32 177KB PCA 人脸识别 Matlab
1
算法流程:本系统运用PCA算法来实现人脸特征提取,然后通过计算欧式距离来判别待识别测试人脸,本个系统框架图如下:图:人脸识别系统框架图整个系统的流程是这样的,首先通过图像采集建立人脸库,这个人脸库里的人脸图像必须是格式及像素统一的,然后针对库里的人脸进行人脸训练,利用PCA进行人脸特征提取,获取特征矩阵向量组,将测试人脸投缘到特征子空间中,运用欧氏距离,在人脸库里查找相应的人脸图像,并输出。
二、算法介绍基于PCA算法的人脸特征提取2.1PCA的基本原理PCA中文全称主成分分析法(PrincipalComponen
1
人脸特征提取matlab源码。
适用于人脸识别的matlab实现。
2024/3/24 8:52:12 186KB 人脸特征提取 matlab
1
PFLD算法,目前主流数据集上达到最高精度、ARM安卓机140fps,模型大小仅2.1M!
2024/3/23 19:46:39 6.04MB PFLD
1
SeetaFace2采用标准C++开发,全部模块均不依赖任何第三方库,支持x86架构(Windows、Linux)和ARM架构(Android)。
SeetaFace2支持的上层应用包括但不限于人脸门禁、无感考勤、人脸比对等。
编译简介2.1编译依赖GNUMake工具GCC或者Clang编译器CM2.2linux和windows平台编译说明linux和windows上的SDK编译脚本见目录craft,其中craft/linux下为linux版本的编译脚本,craft/windows下为windows版本的编译脚本,默认编译的库为64位Release版本。
linux和windows上的SDK编译方法:打开终端(windows上为VS2015x64NativeToolsCommandPrompt工具,linux上为bash),cd到编译脚本所在目录;
执行对应平台的编译脚本。
linux上example的编译运行方法:cd到example/search目录下,执行make指令;
拷贝模型文件到程序指定的目录下;
执行脚本run.sh。
windows上example的编译运行方法:使用vs2015打开SeetaExample.sln构建工程,修改Opencv3.props属性表中变量OpenCV3Home的值为本机上的OpenCV3的安装目录;
执行vs2015中的编译命令;
拷贝模型文件到程序指定的目录下,运行程序。
2.3Android平台编译说明Android版本的编译方法:安装ndk编译工具;
环境变量中导出ndk-build工具;
cd到各模块的jni目录下(如SeetaNet的Android编译脚本位置为SeetaNet/sources/jni,FaceDetector的Android编译脚本位置为FaceDetector/FaceDetector/jni),执行ndk-build-j8命令进行编译。
编译依赖说明:人脸检测模块FaceDetector,面部关键点定位模块FaceLandmarker以及人脸特征提取与比对模块FaceRecognizer均依赖前向计算框架SeetaNet模块,因此需优先编译前向计算框架SeetaNet模块。
1
40M比较大,差点不能上传,绝对的好东西。
人脸识别是图像处理领域的一个重要技术,是该领域非常活跃的研究课题。
它是基于人类脸部特征信息进行身份识别的一种模式识别技术。
由于人脸图像的特殊性,要使这项技术完全成熟并能够应用到现实生活中,还需要有很多亟待解决的问题,因此,人脸识别研究具有很大的挑战性,一直是模式识别领域的研究热点。
人脸识别的过程主要分为三个阶段:人脸检测、特征提取以及分类识别。
针对目前常用的人脸识别方法中存在着一些缺陷,如计算量大,图像受光照、表情、姿态的影响较大等问题,本文提出基于图像处理的方法,获得更好的识别效果。
2.主要内容(1)熟悉目前常用的人脸识别方法;
(2)了解图像处理中应用于模式识别的方法,;
(3)选定用于人脸识别的图像处理方法;
(4)人脸特征提取;
(5)人脸的分类识别;
2024/2/20 15:41:42 39.67MB 人脸识别技术 嵌入式 c语言
1
共 25 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡