E4A配合易语言服务器发送推送消息例子源码
2025/6/28 5:06:24 441KB E4A 易语言 消息推送
Toachieveradarandinfraredstealth,aninfraredstealthlayerisusuallyaddedtotheradarabsorbingmaterial(RAM)ofstealthaircraft.Byanalyzingthemillimeter-wave(MMW)emissivitiesofthreestealthmaterials,thisLetterinvestigatestheimpactoftheaddedinfraredstealthlayerontheoriginally“hot”MMWemissionofRAM.Thetheoreticalandmeasuredresultsindicatethat,comparedwiththemonolayerRAM,theMMWemissionofthebilayermaterialisstillstronganditsemissivityi
2025/6/28 2:20:48 511KB
Fortran2013版,用于对离散数据进行多元线性回归,各符号均有较详细的注释和说明。
对从事回归分析的人员有帮助,也有助于初学者学习Fortran语言。
2025/6/28 2:18:28 153KB 多元 线性回归;
WPD,小波包阈值去噪,对于有的信号的去噪效果比较好,比如非平稳的信号,非线性信号
2025/6/28 2:51:26 1KB 阈值
粒子群工具包遗传粒子群算法鸟群算法BAS工具包-BSA鸟群算法.zip收集了一下,共同分享,共同支持!
2025/6/28 0:17:16 249KB matlab
微机原理上机实验循环程序控制实验。
定时一定时间,屏幕输入从99,98···00循环显示,输入任意键退出。
2025/6/27 21:08:18 782B 微机原理 循环
matlab算法实现的人脸定位和人眼定位,通过肤色找到人脸继而定位人眼matlab算法实现的人脸定位和人眼定位,通过肤色找到人脸继而定位人眼
2025/6/27 19:49:43 2.06MB 人脸定位
复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,求得复杂网络的集类系数
2025/6/27 18:56:15 921B 复杂网络
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
BMI指数(即身体质量指数,简称体质指数又称体重,英文为BodyMassIndex,简称BMI),是用体重公斤数除以身高米数平方得出的数字,是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。
2025/6/27 16:25:49 2.59MB Android
共 1000 条记录 首页 上一页 下一页 尾页