AdaBoost算法有AdaBoost.M1和AdaBoost.M2两种算法,AdaBoost.M1是我们通常所说的DiscreteAdaBoost,而AdaBoost.M2是M1的泛化形式。
关于AdaBoost算法的一个结论是:当弱分类器算法使用简单的分类方法时,boosting的效果明显地统一地比bagging要好.当弱分类器算法使用C4.5时,boosting比bagging较好,但是没有前者明显。
后来又有学者提出了解决多标签问题的AdaBoost.MH和AdaBoost.MR算法,其中AdaBoost.MH算法的一种形式又被称为RealBoost算法---弱分类器输出一个可能度,该值的范围是整个R,和与之相应的权值调整,强分类器生成的AdaBoost算法。
Python实现该算法。
adabbost原理见博客http://blog.csdn.net/suipingsp/article/details/41722435